Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1178362
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSILVA JÚNIOR, A. C. da
dc.contributor.authorPONTES, D.
dc.contributor.authorROSADO, R. D. S.
dc.contributor.authorVILELA, D.
dc.contributor.authorFERREIRA, R. de P.
dc.contributor.authorNASCIMENTO, M.
dc.contributor.authorBHERING, L.
dc.contributor.authorCRUZ, C. D.
dc.date.accessioned2025-08-28T14:48:48Z-
dc.date.available2025-08-28T14:48:48Z-
dc.date.created2025-08-28
dc.date.issued2025
dc.identifier.citationCrop Breeding and Applied Biotechnology, v. 25, n. 2, e45012525, 2025.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1178362-
dc.descriptionThis study provided a comprehensive overview of the behavior of alfalfa genotypes in response to environmental variations. We utilized established methods from literature and examined the unique aspects of each approach to collectively create a criterion for recommending cultivars. To this end, seventy-seven genotypes were cultivated with 24 consecutive cuts (months), during two years. Adaptability and stability analyses were conducted using multiple information estimates. The results indicated no significant effect of the genotypes, but there were significant effects from the environment and the genotype-by-environment (GxE) interaction. Through multi-information analysis, genotype 21 was identified as the most promising due to its superior dry matter yield, predictable performance, and responsiveness to environmental changes across various cuts. Combining data and thoroughly describing the behavior of alfalfa genotypes has proven to be an effective method for studying their adaptability and stability.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectInteração genótipo-ambiente
dc.titleMulti-information analysis to recommend alfalfa cultivars for adaptability and phenotypic stability.
dc.typeArtigo de periódico
dc.subject.thesagroMedicago Sativa
dc.subject.thesagroMelhoramento Vegetal
dc.subject.thesagroGenótipo
riaa.ainfo.id1178362
riaa.ainfo.lastupdate2025-08-28
dc.identifier.doihttp://dx.doi.org/10.1590/1984-70332025v25n2a05
dc.contributor.institutionANTÔNIO CARLOS DA SILVA JÚNIOR, UNIVERSIDADE FEDERAL DE VIÇOSA; DAIANA PONTES, UNIVERSIDADE FEDERAL DE VIÇOSA; RENATO DOMICIANO SILVA ROSADO, UNIVERSIDADE FEDERAL DE VIÇOSA; DUARTE VILELA, CNPGL; REINALDO DE PAULA FERREIRA, CPPSE; MOYSES NASCIMENTO, UNIVERSIDADE FEDERAL DE VIÇOSA; LEONARDO BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA; COSME DAMIÃO CRUZ, UNIVERSIDADE FEDERAL DE VIÇOSA.
Aparece en las colecciones:Artigo em periódico indexado (CNPGL)

Ficheros en este ítem:
Fichero TamañoFormato 
Multi-information-analysis-to-recommend-alfalfa.pdf373.41 kBAdobe PDFVisualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace