Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1178933
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorFONSECA, J. M. O.
dc.contributor.authorGONÇALVES, F. M. A.
dc.contributor.authorSOUZA SOBRINHO, F. de
dc.contributor.authorBUENO FILHO, J. S. de S.
dc.contributor.authorBENITES, F. R. G.
dc.contributor.authorTEIXEIRA, D. H. L.
dc.contributor.authorNUNES, J. A. R.
dc.date.accessioned2025-09-19T10:48:49Z-
dc.date.available2025-09-19T10:48:49Z-
dc.date.created2025-09-19
dc.date.issued2025
dc.identifier.citationActa Scientiarum. Agronomy, v. 47, e72493, 2025.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1178933-
dc.descriptionRuzigass (Urochloa ruziziensis) is a forage crop with high agronomic and nutritional value. Plant breeders often assess ruzigrass phenotypic traits via vigor ratings. The analyses of these categorical data often fail to meet the usual statistical assumptions. In this study, we compared four fittings of linear models for vigor rating analyses: i) a linear mixed model for the original scale (LMM), ii) a linear mixed model for a Box–Cox transformed scale (BCLMM), iii) a multinomial generalized mixed model using a probit link function, also known as threshold model (GLMM), and iv) a hierarchical Bayesian model, also referred to as a Bayesian threshold model (HBM). Additionally, biomass yield was assessed, and the indirect selection of high-performing genotypes was evaluated. The experimental design included 2,204 ruzigrass genotypes randomized into augmented blocks. Six graders visually assessed each plot using a rating scale. Fitting methods were sampled from three scenarios, employing one, three, or six graders. A nonnull genetic variance component was detected for vigor and biomass yield traits. Except for BCLMM, the methods for analyzing vigor ratings were correlated. The correlations and coincidence indices for selecting genotypes increased with the number of graders. The analysis of vigor ratings under Gaussian approximations is riskier when a single grader is used to evaluate genotypes. The GLMM and HBM perform similarly and are more recommended and suitable analyses of vigor ratings when selecting high-performing ruzigrass genotypes.
dc.language.isoeng
dc.rightsopenAccess
dc.titleStatistical modeling of vigor ratings in ruzigrass breeding.
dc.typeArtigo de periódico
dc.subject.thesagroCapim Urochloa
dc.subject.thesagroPlanta Forrageira
dc.subject.thesagroForragem
dc.subject.thesagroMelhoramento Vegetal
dc.subject.nalthesaurusUrochloa ruziziensis
riaa.ainfo.id1178933
riaa.ainfo.lastupdate2025-09-19
dc.contributor.institutionJALES MENDES OLIVEIRA FONSECA, BAYER CROP SCIENCE; FLÁVIA MARIA AVELAR GONÇALVES, UNIVERSIDADE FEDERAL DE LAVRAS; FAUSTO DE SOUZA SOBRINHO, CNPGL; JÚLIO SÍLVIO DE SOUSA BUENO FILHO, UNIVERSIDADE FEDERAL DE LAVRAS; FLAVIO RODRIGO GANDOLFI BENITES, CNPGL; DAVI HENRIQUE LIMA TEIXEIRA, UNIVERSIDADE FEDERAL RURAL DA AMAZONIA; JOSÉ AIRTON RODRIGUES NUNES, UNIVERSIDADE FEDERAL DE LAVRAS.
Aparece en las colecciones:Artigo em periódico indexado (CNPGL)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Statistical-modeling-of-vigor-ratings-in-ruzigrass-breeding.pdf2,36 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace