Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1181847
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSILVA, C. S. da
dc.contributor.authorSGUIZATTO, A. L. L.
dc.contributor.authorMACHADO, A. F.
dc.contributor.authorGRAÇAS, A. V. das
dc.contributor.authorLOPES, F. C. F.
dc.contributor.authorSILVA, A. S.
dc.contributor.authorCAMPOS, M. M.
dc.contributor.authorMORENZ, M. J. F.
dc.date.accessioned2025-11-25T11:49:15Z-
dc.date.available2025-11-25T11:49:15Z-
dc.date.created2025-11-25
dc.date.issued2025
dc.identifier.citationIn: SIMPÓSIO INTERNACIONAL DE BOVINOCULTURA LEITEIRA, 10., 2025, Viçosa, MG. Anais [...]. São Carlos: Scienza, 2025.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1181847-
dc.descriptionThe dry matter intake (DMI) of dairy cows has been estimated through equations developed to accommodate general features of a given group of cows or conditions, mostly purebred cows in temperate climates. Thus, the ability of such equations to accurately predict individual DMI is limited, especially for crossbred cows like the Holstein × Gyr (Girolando) raised in Brazil. Machine-learning (ML) algorithms such as Random Forests (RF) have off ered the opportunity to integrate various features routinely collected within a herd to tailor predictions at the cow level. Random Forests have been applied in diff erent contexts of precision dairy science, including predictions of daily eating time (Foldager et al., 2020). This study aimed to develop a cow-level DMI prediction model for lactating Girolando cows using RF and an integrative approach, which incorporated data from behavior-monitoring collars, phenotypic traits, weather, and diet characteristics to customize predictions.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectRaça Girolando
dc.subjectModelagem
dc.titlePredicting individual dry matter intake in lactating Girolando cows using an integrative approach and machine learning: model performance metrics.
dc.typeArtigo em anais e proceedings
dc.subject.thesagroBovino
dc.subject.thesagroConsumo
dc.subject.thesagroRação
dc.description.notesSIMLEITE.
dc.format.extent2p. 697-700.
riaa.ainfo.id1181847
riaa.ainfo.lastupdate2025-11-25
dc.contributor.institutionANDREIA FERREIRA MACHADO, CNPGL; UNIVERSIDADE FEDERAL DE JUIZ DE FORA; FERNANDO CESAR FERRAZ LOPES, CNPGL; MARIANA MAGALHAES CAMPOS, CNPGL; MIRTON JOSE FROTA MORENZ, CNPGL.
Aparece en las colecciones:Artigo em anais de congresso (CNPGL)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Predicting-individual-dry-matter-intake-.pdf181,85 kBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace