Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1182000
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorALBERTI, R. C. A.
dc.contributor.authorLAUVAUX, T.
dc.contributor.authorVARA-VELA, A. L.
dc.contributor.authorBARRERO, R. S.
dc.contributor.authorKAROFF, C.
dc.contributor.authorANDRADE, M. de F.
dc.contributor.authorMARQUES, M. T. A.
dc.contributor.authorBENAVENTE, N. R.
dc.contributor.authorCABRAL, O. M. R.
dc.contributor.authorROCHA, H. R. da
dc.contributor.authorYNOUE, R. Y.
dc.date.accessioned2025-11-27T18:49:07Z-
dc.date.available2025-11-27T18:49:07Z-
dc.date.created2025-11-27
dc.date.issued2025
dc.identifier.citationAtmospheric Chemistry and Physics, v. 25, n. 17, p. 9803-9829, 2025.
dc.identifier.issn1680-7324
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1182000-
dc.descriptionAbstract. Atmospheric CO2 concentrations in urban areas reflect a combination of fossil fuel emissions and biogenic fluxes, offering a potential approach to assess city climate policies. However, atmospheric models used to simulate urban CO2 plumes face significant uncertainties, particularly in complex urban environments with dense populations and vegetation. This study addresses these challenges by analyzing CO2 dynamics in the Metropolitan Area of São Paulo (MASP) using the Weather Research and Forecasting model with Chemistry (WRF-Chem). Simulations were evaluated against ground-based observations from the METROCLIMA network, the first greenhouse gas monitoring network in South America, and column concentrations (XCO2) from the OCO-2 satellite spanning February to August 2019. To improve biogenic fluxes, we optimized parameters in the Vegetation Photosynthesis and Respiration Model (VPRM) using eddy covariance flux measurements for key vegetation types, including the Atlantic Forest, Cerrado, and sugarcane. Results show that at the urban site (IAG), the model consistently underestimated CO2 concentrations, with a negative mean bias of −9 ppm throughout the simulation period, likely due to the complexity of vehicular emissions and urban dynamics. In contrast, at the vegetated site (PDJ), simulations showed a consistent positive mean bias of 5 ppm and closely matched observations. Seasonal analyses revealed higher CO2 concentrations in winter, driven by greater atmospheric stability and reduced vegetation uptake estimated by VPRM, while summer exhibited lower levels due to increased mixing and higher agricultural productivity. A comparison of biogenic and anthropogenic scenarios highlights the need for integrated emission modeling and improved representation of biogenic fluxes, anthropogenic emissions, and boundary conditions for high-resolution modeling in tropical regions.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectVehicular emissions
dc.subjectAtmospheric models
dc.titleMonitoring and modeling seasonally varying anthropogenic and biogenic CO2 over a large tropical metropolitan area.
dc.typeArtigo de periódico
dc.subject.thesagroDióxido de Carbono
dc.subject.thesagroZona Urbana
dc.subject.thesagroAtmosfera
dc.subject.nalthesaurusCarbon dioxide
dc.subject.nalthesaurusGreenhouse gas emissions
dc.subject.nalthesaurusEnvironmental monitoring
dc.subject.nalthesaurusFossil fuels
dc.subject.nalthesaurusClimate models
riaa.ainfo.id1182000
riaa.ainfo.lastupdate2025-11-27
dc.identifier.doihttps://doi.org/10.5194/acp-25-9803-2025
dc.contributor.institutionRAFAELA CRUZ ALVES ALBERTI, UNIVERSIDADE DE SÃO PAULO; THOMAS LAUVAUX, UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENN; ANGEL LIDUVINO VARA-VELA, AARHUS UNIVERSITY; RICARD SEGURA BARRERO, UNIVERSITAT AUTÒNOMA DE BARCELONA; CHRISTOFFER KAROFF, AARHUS UNIVERSITY; MARIA DE FÁTIMA ANDRADE, UNIVERSIDADE DE SÃO PAULO; MÁRCIA TALITA AMORIM MARQUES, UNIVERSIDADE DE SÃO PAULO; NOELIA ROJAS BENAVENTE, UNIVERSIDADE DE SÃO PAULO; OSVALDO MACHADO RODRIGUES CABRAL, CNPMA; HUMBERTO RIBEIRO DA ROCHA, UNIVERSIDADE DE SÃO PAULO; RITA YURI YNOUE, UNIVERSIDADE DE SÃO PAULO.
Aparece nas coleções:Artigo em periódico indexado (CNPMA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Monitoring-and-modeling-seasonally-varying-2025.pdf6,62 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace