Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1182534| Título: | Interpreting machine learning models with SHAP values: application to crude protein prediction in Tamani grass pastures. |
| Autoria: | MONTEIRO, G. O. de A.![]() ![]() DIFANTE, G. dos S. ![]() ![]() MONTAGNER, D. B. ![]() ![]() EUCLIDES, V. P. B. ![]() ![]() CASTRO, M. ![]() ![]() RODRIGUES, J. G. ![]() ![]() PEREIRA, M. de G. ![]() ![]() ÍTAVO, L. C. V. ![]() ![]() CAMPOS, J. A. ![]() ![]() COSTA, A. B. da ![]() ![]() MATSUBARA, E. T. ![]() ![]() |
| Afiliação: | GABRIELA OLIVEIRA DE AQUINO MONTEIRO, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; GELSON DOS SANTOS DIFANTE, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; DENISE BAPTAGLIN MONTAGNER, CNPGC; VALERIA PACHECO BATISTA EUCLIDES, CNPGC; MARINA CASTRO, INSTITUTO POLITÉCNICO DE BRAGANÇA; JÉSSICA GOMES RODRIGUES, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; MARISLAYNE DE GUSMÃO PEREIRA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; LUÍS CARLOS VINHAS ÍTAVO, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; JECELEN ADRIANE CAMPOS, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; ANDERSON BESSA DA COSTA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; EDSON TAKASHI MATSUBARA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL. |
| Ano de publicação: | 2025 |
| Referência: | Agronomy, v. 15, 2780, 2025. |
| Conteúdo: | Machine learning models such as XGBoost show strong potential for predicting pasture quality metrics like crude protein (CP) content in tamani grass (Panicum maximum). How- ever, their ‘black box’ nature hinders practical adoption. To address this limitation, this study applied SHapley Additive exPlanations (SHAP) to interpret an XGBoost model and uncover how management practices (grazing interval, nitrogen fertilization, and pre- and post-grazing heights) and environmental factors (precipitation, temperature, and solar radi- ation) jointly influence CP predictions. Data were divided into 80% for training/validation and 20% for testing. Model performance was assessed with stratified 5-fold cross-validation, and hyperparameters were tuned via grid search. The XGBoost model yielded a Pearson correlation coefficient (r) of 0.78, a mean absolute error (MAE) of 1.45, and a coefficient of de- termination (R2 ) of 0.57. The results showed that precipitation in the range of 100–180 mm increased the predicted CP content. Application of 240 kg N ha−1 year−1 positively af- fected predicted CP, whereas a lower dose of 80 kg N ha−1 year−1 had a negative impact, reducing predicted levels of CP. These findings highlight the importance of integrated management strategies that combine grazing height, nitrogen fertilization, and grazing intervals to optimize crude protein levels in tamani grass pastures. |
| Thesagro: | Pastagem Panicum Maximum Proteína Bruta |
| NAL Thesaurus: | Crude protein Algorithms Pasture management |
| ISSN: | 2073-4395 |
| Digital Object Identifier: | https://doi.org/10.3390/agronomy15122780 |
| Tipo do material: | Artigo de periódico |
| Acesso: | openAccess |
| Aparece nas coleções: | Artigo em periódico indexado (CNPGC)![]() ![]() |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Interpreting-machine-learning-models-2025.pdf | 1,79 MB | Adobe PDF | ![]() Visualizar/Abrir |








