Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1183941
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMARTINS, J. C. de A.
dc.contributor.authorNASCIMENTO, A. R. O. do
dc.contributor.authorTAVEIRA, A. A. R.
dc.contributor.authorFERREIRA, G. da C. A.
dc.contributor.authorSILVA, E. V. da C. e
dc.contributor.authorSILVA, J. C. B.
dc.contributor.authorNOGUEIRA, E.
dc.date.accessioned2026-01-27T18:48:56Z-
dc.date.available2026-01-27T18:48:56Z-
dc.date.created2026-01-27
dc.date.issued2025
dc.identifier.citationAnimal Reproduction Science, v. 272, Supplement, 107681, 2025.
dc.identifier.issn0378-4320eng
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1183941-
dc.descriptionAnalyses of cryopreserved semen batches are carried out using various technologies, including microscopy with sub-jective analysis and CASA (Computer-assisted semen analy- sis), focusing on different abilities of the sperm. The choice of semen for AI largely affects the final result. Thus, it was proposed to evaluate the applicability of fertility prediction models and the efficiency of two CASA (Hamilton Thorn IvosII, hCASA, and iSperm) and subjective analyses. Doses of cryopreserved semen from 15 bulls (Nelore and Angus) used in fixed time artificial insemination (FTAI) were analyzed.
dc.language.isoeng
dc.rightsopenAccess
dc.titleFertility prediction in fixed-time artificial insemination according to semen analysis methodology.
dc.typeResumo em anais e proceedings
dc.subject.thesagroGado Nelore
dc.subject.thesagroInseminação Artificial
dc.subject.thesagroSêmen
dc.subject.nalthesaurusAngus
dc.subject.nalthesaurusArtificial insemination
dc.subject.nalthesaurusBulls
dc.subject.nalthesaurusNellore
dc.description.notesAbstracts from 14th Biennial Conference, Association for Applied Animal Andrology (AAAA).
riaa.ainfo.id1183941
riaa.ainfo.lastupdate2026-01-27
dc.identifier.doihttps://doi.org/10.1016/j.anireprosci.2024.107700
dc.contributor.institutionJUAN CUEVAS DE ALVARENGA MARTINS, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; ALINE REGINA ONORI DO NASCIMENTO, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; AMANDA ALVES ROSA TAVEIRA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; GRAZIELA DA COSTA ALVES FERREIRA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; ELIANE VIANNA DA COSTA E SILVA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; JULIANA CORREA BORGES SILVA, CNPGC; ERIKLIS NOGUEIRA, CNPGC.
Aparece nas coleções:Resumo em anais de congresso (CNPGC)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Fertility-prediction-fixed-time-artificial-2025.pdf261,17 kBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace