Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1184045
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorYASSITEPE, J. E. de C. T.
dc.contributor.authorPEREIRA, H. D.
dc.contributor.authorNONATO, J. V. A.
dc.contributor.authorMOLTOCARO, R. C. R.
dc.contributor.authorGERHARDT, I. R.
dc.contributor.authorDANTE, R. A.
dc.contributor.authorARRUDA, P.
dc.date.accessioned2026-01-30T17:50:43Z-
dc.date.available2026-01-30T17:50:43Z-
dc.date.created2026-01-30
dc.date.issued2025
dc.identifier.citationIn: ANNUAL MAIZE GENETICS MEETING, 67., 2025, St. Louis. Program and abstracts. Beltsville: USDA, 2025. P269.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1184045-
dc.descriptionClimate change has increased the need for drought-resilient crops, yet traditional assessment methods are labor-intensive. This study utilized an unmanned aerial system (UAS) with RGB and multispectral sensors to monitor transgenic maize hybrids under irrigated and drought conditions. Machine learning models revealed strong correlations between vegetation indices and phenotypic traits, with RGB sensors outperforming multispectral sensors in trait prediction. Prediction accuracies ranged from 0.35 to 0.70 for traits like grain yield, days to anthesis, and plant height. Ridge regression and random forest models provided the best predictions. The vegetation indices NGRDI, VARI, and RCC effectively predicted and captured the plant response to drought. This study demonstrates the potential of UAS phenotyping as an efficient tool for assessing drought resilience in maize breeding programs.
dc.language.isopor
dc.rightsopenAccess
dc.titleTemporal field-based phenomics for evaluating transgenic maize under drought stress.
dc.typeResumo em anais e proceedings
dc.subject.thesagroMilho
dc.subject.thesagroSeca
dc.subject.thesagroResistência a Seca
dc.subject.nalthesaurusTransgenic plants
dc.format.extent2p. 228.
riaa.ainfo.id1184045
riaa.ainfo.lastupdate2026-01-30
dc.contributor.institutionJULIANA ERIKA DE CARVALHO TEIXEIRA YASSITEPE, CNPTIA; HELCIO D. PEREIRA, GENOMICS FOR CLIMATE CHANGE RESEARCH CENTER, CAMPINAS, SP, BRAZIL; CENTRO DE BIOLOGIA MOLECULAR E ENGENHARIA GENÉTICA, UNICAMP, CAMPINAS, SP, BRAZIL; JULIANNA V. A. NONATO, GENOMICS FOR CLIMATE CHANGE RESEARCH CENTER, CAMPINAS, SP, BRAZIL; CENTRO DE BIOLOGIA MOLECULAR E ENGENHARIA GENÉTICA, UNICAMP, CAMPINAS, SP, BRAZIL; RAFAELA CAROLINE RANGNI MOLTOCARO DUARTE, CNPMA; ISABEL RODRIGUES GERHARDT, CNPTIA; RICARDO AUGUSTO DANTE, CNPTIA; PAULO ARRUDA, GENOMICS FOR CLIMATE CHANGE RESEARCH CENTER, CAMPINAS, SP, BRAZIL.
Aparece en las colecciones:Resumo em anais de congresso (CNPMA)

Ficheros en este ítem:
Fichero TamañoFormato 
OK-AUTORIA-PROBLEMA-RA-MoltocaroRCR-67-Annual-Maize-Genetics-Meeting-2025-Ref-P269.pdf109,74 kBAdobe PDFVisualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace