Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1184045Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | YASSITEPE, J. E. de C. T. | |
| dc.contributor.author | PEREIRA, H. D. | |
| dc.contributor.author | NONATO, J. V. A. | |
| dc.contributor.author | MOLTOCARO, R. C. R. | |
| dc.contributor.author | GERHARDT, I. R. | |
| dc.contributor.author | DANTE, R. A. | |
| dc.contributor.author | ARRUDA, P. | |
| dc.date.accessioned | 2026-01-30T17:50:43Z | - |
| dc.date.available | 2026-01-30T17:50:43Z | - |
| dc.date.created | 2026-01-30 | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | In: ANNUAL MAIZE GENETICS MEETING, 67., 2025, St. Louis. Program and abstracts. Beltsville: USDA, 2025. P269. | |
| dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1184045 | - |
| dc.description | Climate change has increased the need for drought-resilient crops, yet traditional assessment methods are labor-intensive. This study utilized an unmanned aerial system (UAS) with RGB and multispectral sensors to monitor transgenic maize hybrids under irrigated and drought conditions. Machine learning models revealed strong correlations between vegetation indices and phenotypic traits, with RGB sensors outperforming multispectral sensors in trait prediction. Prediction accuracies ranged from 0.35 to 0.70 for traits like grain yield, days to anthesis, and plant height. Ridge regression and random forest models provided the best predictions. The vegetation indices NGRDI, VARI, and RCC effectively predicted and captured the plant response to drought. This study demonstrates the potential of UAS phenotyping as an efficient tool for assessing drought resilience in maize breeding programs. | |
| dc.language.iso | por | |
| dc.rights | openAccess | |
| dc.title | Temporal field-based phenomics for evaluating transgenic maize under drought stress. | |
| dc.type | Resumo em anais e proceedings | |
| dc.subject.thesagro | Milho | |
| dc.subject.thesagro | Seca | |
| dc.subject.thesagro | Resistência a Seca | |
| dc.subject.nalthesaurus | Transgenic plants | |
| dc.format.extent2 | p. 228. | |
| riaa.ainfo.id | 1184045 | |
| riaa.ainfo.lastupdate | 2026-01-30 | |
| dc.contributor.institution | JULIANA ERIKA DE CARVALHO TEIXEIRA YASSITEPE, CNPTIA; HELCIO D. PEREIRA, GENOMICS FOR CLIMATE CHANGE RESEARCH CENTER, CAMPINAS, SP, BRAZIL; CENTRO DE BIOLOGIA MOLECULAR E ENGENHARIA GENÉTICA, UNICAMP, CAMPINAS, SP, BRAZIL; JULIANNA V. A. NONATO, GENOMICS FOR CLIMATE CHANGE RESEARCH CENTER, CAMPINAS, SP, BRAZIL; CENTRO DE BIOLOGIA MOLECULAR E ENGENHARIA GENÉTICA, UNICAMP, CAMPINAS, SP, BRAZIL; RAFAELA CAROLINE RANGNI MOLTOCARO DUARTE, CNPMA; ISABEL RODRIGUES GERHARDT, CNPTIA; RICARDO AUGUSTO DANTE, CNPTIA; PAULO ARRUDA, GENOMICS FOR CLIMATE CHANGE RESEARCH CENTER, CAMPINAS, SP, BRAZIL. | |
| Aparece en las colecciones: | Resumo em anais de congresso (CNPMA)![]() ![]() | |
Ficheros en este ítem:
| Fichero | Tamaño | Formato | |
|---|---|---|---|
| OK-AUTORIA-PROBLEMA-RA-MoltocaroRCR-67-Annual-Maize-Genetics-Meeting-2025-Ref-P269.pdf | 109,74 kB | Adobe PDF | Visualizar/Abrir |







