Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/577988
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHAMADA, E.pt_BR
dc.contributor.authorGHINI, R.pt_BR
dc.contributor.authorLANA, J. T. de O.pt_BR
dc.contributor.authorSABATO, E. de O.pt_BR
dc.contributor.otherEMILIA HAMADA, CNPMA; RAQUEL GHINI, CNPMA; JOSE TADEU DE OLIVEIRA LANA, CNPMA; ELIZABETH DE OLIVEIRA SABATO, CNPMS.pt_BR
dc.date.accessioned2011-04-10T11:11:11Zpt_BR
dc.date.available2011-04-10T11:11:11Zpt_BR
dc.date.created2009-12-15pt_BR
dc.date.issued2009pt_BR
dc.identifier.other8493pt_BR
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/577988pt_BR
dc.descriptionThis study presents an application of the geographical information system technology on plant disease involving a multidisciplinary teamwork of geoprocessing and physiopathology specialists. The spatial analysis tools in a GIS were used to evaluate the spatial distribution of two diseases of maize in Brazil: polysora rusl caused by Puccinia polysora and tropical rust caused by Physopella zeae. A database of cIimate variables (mean temperature. relative humidity. and leaf wetness duration) of cIimatological normal from 1961-1990 was obtained and then related it to a mathematical model of disease development (polysora rust) and to the cIimate intervals (tropical rust) in order to obtain the maps. The choice of the model or the favorable climate interval is the important chalIenge of the method because the difficulty of adequacy to the spatial and temporal scales for the specific application. The major incidence of both disease occurred in almost alI the North region from January to June. although this region has traditionalIy a low production of maize. Considering the biggest producers regions. for both the diseases, favorable areas are located in part of Mato Grosso, Tocanlins. Minas Gerais; Mato Grosso do Sul. and coastal areas of São Paulo, Paraná, and Santa Catarina. varying among the dilferent months from January to June. The method allowed making an adequate distinction of the states and the months considered.pt_BR
dc.description.uribitstream/item/143386/1/2009AA-026.pdfpt_BR
dc.languagept_BRpt_BR
dc.language.isoporpt_BR
dc.publisherIn: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 14., 2009, Natal. Anais... São José dos Campos: INPE, 2009.pt_BR
dc.relation.ispartofEmbrapa Meio Ambiente - Artigo em anais de congresso (ALICE)pt_BR
dc.rightsopenAccesspt_BR
dc.subjectPeríodo de molhamento foliarpt_BR
dc.titleAplicação de Sistema de Informações Geográficas na análise espacial de doenças do milho no Brasil.pt_BR
dc.typeArtigo em anais de congresso (ALICE)pt_BR
dc.date.updated2016-05-25T11:11:11Zpt_BR
dc.subject.thesagroMilhopt_BR
dc.subject.thesagroTemperaturapt_BR
dc.subject.thesagroUmidade relativapt_BR
dc.format.extent2p. 3883-3889.pt_BR
dc.ainfo.id577988pt_BR
dc.ainfo.lastupdate2016-05-25pt_BR
Appears in Collections:Artigo em anais de congresso (CNPMA)

Files in This Item:
File Description SizeFormat 
2009AA026.pdf1,52 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace