Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/902113
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorLU, D.pt_BR
dc.contributor.authorLI, G.pt_BR
dc.contributor.authorMORAN, E.pt_BR
dc.contributor.authorDUTRA, L.pt_BR
dc.contributor.authorBATISTELLA, M.pt_BR
dc.date.accessioned2014-09-17T07:35:27Z-
dc.date.available2014-09-17T07:35:27Z-
dc.date.created2011-10-03pt_BR
dc.date.issued2011pt_BR
dc.identifier.citationGIScience & Remote Sensing, v. 48, n. 3, p. 345-370, 2011.pt_BR
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/902113pt_BR
dc.descriptionMany data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods?principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)?were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%?5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%?6.1% and 7.6% ?12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.pt_BR
dc.language.isoporpt_BR
dc.rightsopenAccesspt_BR
dc.subjectLandsat Thematic Mapperpt_BR
dc.subjectWavelet multisensorpt_BR
dc.titleA comparison of multisensor integration methods for land cover classification in the Brazilian Amazon.pt_BR
dc.typeArtigo de periódicopt_BR
dc.date.updated2019-05-03T11:11:11Zpt_BR
riaa.ainfo.id902113pt_BR
riaa.ainfo.lastupdate2019-05-03 -03:00:00pt_BR
dc.identifier.doi10.2747/1548-1603.48.3.345pt_BR
dc.contributor.institutionDENGSHENG LU, INDIANA UNIVERSITY; GUIYING LI, INDIANA UNIVERSITY; EMILIO MORAN, INDIANA UNIVERSITY; LUCIANO DUTRA, INPE; MATEUS BATISTELLA, CNPM.pt_BR
Aparece en las colecciones:Artigo em periódico indexado (CNPM)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
ComparisonfusionmethodsGisRS2011.pdf7.17 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace