Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/9196
Title: | Predicting enzyme class from protein structure using Bayesian classification. |
Authors: | BORRO, L. C.![]() ![]() OLIVEIRA, S. R. M. ![]() ![]() YAMAGISHI, M. E. B. ![]() ![]() MANCINI, A. L. ![]() ![]() JARDINE, J. G. ![]() ![]() MAZONI, I. ![]() ![]() SANTOS, E. H. dos ![]() ![]() HIGA, R. H. ![]() ![]() KUSER, P. R. ![]() ![]() NESHICH, G. ![]() ![]() |
Affiliation: | LUIZ C. BORRO, CNPTIA; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; ADAUTO LUIZ MANCINI, CNPTIA; JOSE GILBERTO JARDINE, CNPTIA; IVAN MAZONI, CNPTIA; EDGARD HENRIQUE DOS SANTOS, CNPTIA; ROBERTO HIROSHI HIGA, CNPTIA; PAULA REGINA KUSER FALCAO, CNPTIA; GORAN NESHICH, CNPTIA. |
Date Issued: | 2006 |
Citation: | Genetics and Molecular Research, v. 5, n. 1, p. 193-202, 2006. |
Description: | ABSTRACT. Predicting enzyme class from protein structure parameters is a challenging problem in protein analysis. We developed a method to predict enzyme class that combines the strengths of statistical and data-mining methods. This method has a strong mathematical foundation and is simple to implement, achieving an accuracy of 45%. A comparison with the methods found in the literature designed to predict enzyme class showed that our method outperforms the existing methods. |
NAL Thesaurus: | Bioinformatics Protein structure |
Keywords: | Bioinformática Estrutura de proteína Classe de enzima Bayesian classification Protein function prediction Naive Bayes Enzyme classification number Bayesian classifier Data classification |
Type of Material: | Artigo de periódico |
Access: | openAccess |
Appears in Collections: | Artigo em periódico indexado (CNPTIA)![]() ![]() |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
APPredictingBorroGMR2006.pdf | 484.07 kB | Adobe PDF | ![]() View/Open |