Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/976311
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorBARBEDO, J. G. A.eng
dc.date.accessioned2020-01-08T18:16:40Z-
dc.date.available2020-01-08T18:16:40Z-
dc.date.created2014-01-16
dc.date.issued2013
dc.identifier.citationSpringerPlus, v. 2, p. 1-12, 2013.eng
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/976311-
dc.descriptionAbstract. This paper presents a survey on methods that use digital image processing techniques to detect, quantify and classify plant diseases from digital images in the visible spectrum. Although disease symptoms can manifest in any part of the plant, only methods that explore visible symptoms in leaves and stems were considered. This was done for two main reasons: to limit the length of the paper and because methods dealing with roots, seeds and fruits have some peculiarities that would warrant a specific survey. The selected proposals are divided into three classes according to their objective: detection, severity quantification, and classification. Each of those classes, in turn, are subdivided according to the main technical solution used in the algorithm. This paper is expected to be useful to researchers working both on vegetable pathology and pattern recognition, providing a comprehensive and accessible overview of this important field of research.eng
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectProcessamento de imagenseng
dc.subjectImagem digitaleng
dc.subjectImage processingeng
dc.titleDigital image processing techniques for detecting, quantifying and classifying plant diseases.eng
dc.typeArtigo de periódicoeng
dc.date.updated2020-01-08T18:16:40Z
dc.subject.nalthesaurusDigital imageseng
riaa.ainfo.id976311eng
riaa.ainfo.lastupdate2020-01-08
dc.identifier.doi10.1186/2193-1801-2-660eng
dc.contributor.institutionJAYME GARCIA ARNAL BARBEDO, CNPTIA.eng
Aparece en las colecciones:Artigo em periódico indexado (CNPTIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
jaymespringerplus2013.pdf378.7 kBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace