Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1017535
Research center of Embrapa/Collection: Embrapa Florestas - Artigo em anais de congresso (ALICE)
Date Issued: 2015
Type of Material: Artigo em anais de congresso (ALICE)
Authors: LUZ, N. B. da
OLIVEIRA, Y. M. M. de
ROSOT, M. A. D.
GARRASTAZU, M. C.
FRANCISCON, L.
MESQUITA JÚNIOR, H. N. de
FREITAS, J. V. de
Additional Information: Naíssa Batista da Luz, ONU/FAO; YEDA MARIA MALHEIROS DE OLIVEIRA, CNPF; MARIA AUGUSTA DOETZER ROSOT, CNPF; MARILICE CORDEIRO GARRASTAZU, CNPF; LUZIANE FRANCISCON, CNPF; Humberto Navarro de Mesquita Júnior, Serviço Florestal Brasileiro; Joberto Veloso de Freitas, Serviço Florestal Brasileiro.
Title: Classificação híbrida de imagens Landsat-8 e RapidEye para o mapeamento do uso e cobertura da terra nas Unidades Amostrais de Paisagem do Inventário Florestal Nacional do Brasil.
Publisher: In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 17., 2015, João Pessoa. Anais... São José dos Campos: INPE, 2015.
Pages: p. 7222-7230.
Language: pt_BR
Keywords: Imagem de satélite
Inventário Florestal Nacional
Classificação orientada a objetos
Classificação automática de imagens
Brasil
Object-based classification
Automatic image classification
Ancillary data.
Description: In response to the growing demand for reliable information on forest and tree resources as well as for land use/land cover (LULC) maps at larger scales, the Brazilian National Forest Inventory (NFI-BR) is now being conducted. Besides the traditional approaches related to forest assessment, the NFI-BR includes a geospatial component to provide such information at landscape scale. Using a sampling grid of 20 km × 20 km, field registry sample units were established, and 100 km2 landscape sample units (LSU) were located on a 40 km × 40 km grid. LULC maps are being prepared for each LSU using RapidEye and Landsat-8 imagery. Different remote sensing techniques are being tested to characterize LULC in order to identify patterns in different themes using spatial analysis, such as forest fragmentation, state of conservation, production and forest health. The mapping approach uses a hybrid approach, here understood as the combination of automatic unsupervised pixel-by-pixel classification and object based image classification. Attributes from image objects such as spectral characteristics, texture, and context are also involved in process tree classification, as well as ancillary data such as roads, water bodies and digital terrain models. LULC maps are the basis for analyzing landscape-scale forest fragmentation analysis as well as for evaluating compliance of permanent preservation areas under recently approved environmental legislation.
Thesagro: Sensoriamento Remoto.
Data Created: 2015-06-12
Appears in Collections:Artigo em anais de congresso (CNPF)

Files in This Item:
File Description SizeFormat 
2015MariliceClassificacaohibridadeimagensLandsat8eRapidEye.pdf1 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace