Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/992324
Research center of Embrapa/Collection: Embrapa Informática Agropecuária - Artigo em periódico indexado (ALICE)
Date Issued: 2014
Type of Material: Artigo em periódico indexado (ALICE)
Authors: MEGETO, G. A. S.
OLIVEIRA, S. R. de M.
DEL PONTE, E. M.
MEIRA, C. A. A.
Additional Information: GUILHERME A. S. MEGETO, Unicamp; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; EMERSON M. DEL PONTE, UFRGS; CARLOS ALBERTO ALVES MEIRA, CNPTIA.
Title: Árvore de decisão para classificação de ocorrências de ferrugem asiática em lavouras comerciais com base em variáveis meteorológicas.
Publisher: Engenharia Agrícola, Jaboticabal, v, 34, n. 3, p. 590-599, maio/jun. 2014
Language: pt_BR
Keywords: Mineração de dados
Previsão de doenças de plantas
Sistemas de suporte à decisão
Data mining.
Description: A ferrugem asiática é a mais importante doença da soja no Brasil. Apesar de sua epidemiologia ser conhecida, são escassos os estudos sobre os fatores que desencadeiam a doença com base em dados de campo. Este trabalho objetivou modelar a influência de variáveis meteorológicas a partir de um conjunto extenso de dados de ocorrência da ferrugem, por meio da técnica de indução de árvores de decisão. Os modelos foram desenvolvidos com dados de data de ocorrência da doença em quatro safras (2007/08 a 2010/11) e variáveis de temperatura e chuva em diferentes janelas de tempo prévias à data de detecção. Para cada registro de ocorrência, foi gerado um correspondente de "não ocorrência" como sendo o trigésimo dia anterior ao dia da detecção, assumindo-se a presença de inóculo, mas condições meteorológicas desfavoráveis à doença. O conjunto de treinamento para a modelagem foi composto de 45 variáveis de chuva e temperatura e 12.591 registros. O modelo preditivo escolhido resultou em uma árvore de decisão com, aproximadamente, 78% de taxa de acerto e 108 regras, determinadas por validação cruzada. O modelo interpretado, com 28 regras, considerou variáveis de temperatura como mais importantes, sendo que temperaturas abaixo de 15 °C e acima de 30 °C foram relacionadas com eventos de não ocorrência, enquanto temperaturas dentro da faixa favorável foram associadas com eventos de ocorrência, mostrando coerência com a literatura.
Thesagro: Soja
Doença
Epidemiologia
Glycine Max
Phakopsora Pachyrhizi.
NAL Thesaurus: Soybean rust
Rust diseases.
Data Created: 2014-08-12
Appears in Collections:Artigo em periódico indexado (CNPTIA)

Files in This Item:
File Description SizeFormat 
arvoredecisao.pdf216,68 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace