Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1032260
Title: | Improving binding affinity prediction by using a rule-based model with physical-chemical and structural descriptors of the nano-environment for protein-ligand interactions. |
Authors: | BORRO, L. C.![]() ![]() SALIM, J. A. ![]() ![]() MAZONI, I. ![]() ![]() YANO, I. ![]() ![]() JARDINE, J. G. ![]() ![]() NESHICH, G. ![]() ![]() |
Affiliation: | IB/Unicamp; FEEC/Unicamp; IVAN MAZONI, CNPTIA; INACIO HENRIQUE YANO, CNPTIA; JOSÉ GILBERTO JARDINE, CNPTIA; GORAN NESHICH, CNPTIA. |
Date Issued: | 2015 |
Citation: | In: CONGRESS OF THE INTERNATIONAL UNION FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, 23.; ANNUAL MEETING OF THE BRAZILIAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, 44., 2015, Foz do Iguaçu. Biochemistry for a better world: abstracts book. [Foz do Iguaçu]: SBBq, 2015. |
Pages: | p. 153. |
Description: | In order to improve binding affinity prediction, we developed a new scoring function, named STINGSF, derived from physical-chemical and structural features that describe the protein-ligand interaction nano-environment of experimentally determined structures. |
NAL Thesaurus: | Artificial intelligence |
Keywords: | Interação proteína-ligante Aprendizado de máquina Inteligência artificial Protein-ligand interaction Scoring functions Machine learning |
Notes: | C.047. |
Type of Material: | Resumo em anais e proceedings |
Access: | openAccess |
Appears in Collections: | Resumo em anais de congresso (CNPTIA)![]() ![]() |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ImprovingBorro.pdf | 120.45 kB | Adobe PDF | ![]() View/Open |