Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1065163
Título: Proposition of classification models for the direct evaluation of the quality of cattle and sheep leathers using laser-induced breakdown spectroscopy (LIBS) analysis.
Autor: NEIVA, A. M.
JACINTO, M. A. C.
ALENCAR, M. M. de
ESTEVES, S. N.
PEREIRA FILHO, E. R.
Afiliación: Ariane Maciel Neiva, UFSCar; MANUEL ANTONIO CHAGAS JACINTO, CPPSE; MAURICIO MELLO DE ALENCAR, CPPSE; SERGIO NOVITA ESTEVES, CPPSE; Edenir Rodrigues Pereira Filho, UFSCAR.
Año: 2016
Referencia: RSC Advances, v. 106, n. 6, p. 104827-104838, 2016.
Descripción: This study proposes classification models for the prediction of the quality parameters of cattle and sheep leathers. In total, 375 leather samples were directly analyzed by laser-induced breakdown spectroscopy (LIBS). Exploratory analysis using principal component analysis (PCA) and classification models employing K-nearest neighbor (KNN), soft independent modeling of class analogy (SIMCA), and partial least squares ? discriminant analysis (PLS-DA) were the chemometric tools used in the multivariate analysis. The goal was to classify the leather samples according to their quality. The calculated models have satisfactory results with correct prediction percentages ranging from 75.2 (for SIMCA) to 80.5 (for PLS-DA) for the calibration dataset and from 71.6 (for SIMCA) to 80.9 (for KNN) for the validation samples. The proposed method can be used for preliminary leather quality inspection without chemical residues generation.
NAL Thesaurus: cattle
sheep
Palabras clave: LIBS
DOI: 10.1039/C6RA22337K
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (CPPSE)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
C6RA22337K.pdf1.02 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace