Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1083291
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | SANTOS, T. T. | |
dc.contributor.author | BASSOI, L. H. | |
dc.contributor.author | OLDONI, H. | |
dc.contributor.author | MARTINS, R. L. | |
dc.date.accessioned | 2017-12-23T23:19:48Z | - |
dc.date.available | 2017-12-23T23:19:48Z | - |
dc.date.created | 2017-12-21 | |
dc.date.issued | 2017 | |
dc.identifier.citation | In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 11., 2017, Campinas. Ciência de dados na era da agricultura digital: anais. Campinas: Editora da Unicamp: Embrapa Informática Agropecuária, 2017. | |
dc.identifier.isbn | 978-85-85783-75-4 | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1083291 | - |
dc.description | This work presents a methodology for 3-D phenotyping of vineyards based on images captured by a low cost high-definition webcamera. A novel software application integrated visual odometry and multiple-view stereo components to create dense and accurate three-dimensional points clouds for vines, properly transformed to millimeter scale. Geometrical and color features of the points were employed by a classification procedure that reached 93% of accuracy on detecting points belonging to grapes. Individual bunches were automatically delimited and their volumes estimated. The sum of the estimated volumes per vine presented a coefficient of correlation of R = 0.99 to the real grape weight observed in each vine after harvesting. | |
dc.language.iso | eng | eng |
dc.rights | openAccess | eng |
dc.subject | Estimativa de podução | |
dc.subject | Métodos não-invasivos | |
dc.subject | Fenotipagem 3D | |
dc.subject | Visão estéro múltipla | |
dc.subject | Simultaneous localization and mapping | |
dc.subject | Yield estimation | |
dc.subject | Non-invasive methods | |
dc.subject | 3-D phenotyping | |
dc.subject | Multiple view stereo | |
dc.subject | Videira | pt_BR |
dc.title | Automatic grape bunch detection in vineyards based on affordable 3D phenotyping using a consumer webcam. | |
dc.type | Artigo em anais e proceedings | |
dc.date.updated | 2020-01-21T11:11:11Z | pt_BR |
dc.subject.thesagro | Viticultura | |
dc.subject.nalthesaurus | Viticulture | |
dc.subject.nalthesaurus | Phenotype | |
dc.description.notes | SBIAgro 2017. | |
dc.format.extent2 | p. 89-98. | |
riaa.ainfo.id | 1083291 | |
riaa.ainfo.lastupdate | 2020-01-21 -02:00:00 | |
dc.contributor.institution | THIAGO TEIXEIRA SANTOS, CNPTIA; LUIS HENRIQUE BASSOI, CNPDIA; HENRIQUE OLDONI, Unesp Botucatu; ROBERTO LUVISUTTO MARTINS, Unesp Botucatu. | |
Aparece nas coleções: | Artigo em anais de congresso (CNPTIA)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
AutomaticgrapeSBIAgro.pdf | 6.16 MB | Adobe PDF | ![]() Visualizar/Abrir |