Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1086472
Research center of Embrapa/Collection: Embrapa Arroz e Feijão - Artigo em periódico indexado (ALICE)
Date Issued: 2017
Type of Material: Artigo em periódico indexado (ALICE)
Authors: MORAIS JÚNIOR, O. P.
DUARTE, J. B.
BRESEGHELLO, F.
COELHO, A. S. G.
BORBA, T. C. O.
AGUIAR, J. T.
NEVES, P. C. F.
MORAIS, O. P.
Additional Information: ODILON PEIXOTO MORAIS JUNIOR; JOAO BATISTA DUARTE, UFG; FLAVIO BRESEGHELLO, CNPAF; ALEXANDRE S. G. COELHO, UFG; TEREZA CRISTINA DE OLIVEIRA BORBA, CNPAF; JORDENE T. AGUIAR; PERICLES DE CARVALHO FERREIRA NEVES, CNPAF; ORLANDO PEIXOTO DE MORAIS, CNPAF.
Title: Relevance of additive and non-additive genetic relatedness for genomic prediction in rice population under recurrent selection breeding
Publisher: Genetics and Molecular Research, v. 16, n. 4, gmr16039849, Dec. 2017.
Language: en
Keywords: Genetic architecture
Predictive accuracy
GBLUP models
Variance components.
Description: In genomic recurrent selection programs of self-pollinated crops, additive genetic effects (breeding values) are effectively relevant for selection of superior progenies as new parents. However, considering additive and nonadditive genetic effects can improve the prediction of genome-enhanced breeding values (GEBV) of progenies, for quantitative traits. In this study, we assessed the magnitude of additive and nonadditive genetic variances for eight key traits in a rice population under recurrent selection, using marker-based relationship matrices. We then assessed the goodness-to-fit, bias, stability and accuracy of prediction for breeding values and total (additive plus nonadditive) genetic values, in five genomic best linear unbiased prediction (GBLUP) models, ignoring or not nonadditive genetic effects. The models were compared using 6174 single nucleotide polymorphisms (SNP) markers from 174 S1:3 progenies evaluated in field yield trial. We found dominance effects accounting for a substantial proportion of the total genetic variance for the key traits in rice, especially for days to flowering. In average of the traits, the component of variance additive, dominance, and epistatic contributed to about 34%, 14% and 9% for phenotypic variance. Additive genomic models, ignoring nonadditive genetic effects, showed better fit to the data and lower bias, in addition to greater stability and accuracy for predict GEBV of progenies. These results improve our understanding of the genetic architecture of the key traits in rice, evaluated in early-generation testing. Clearly, this study highlighted the advantages of additive models using genome-wide information, for genomic prediction applied to recurrent selection in a self-pollinated crop.
Thesagro: Arroz
Oryza sativa
Melhoramento genético vegetal
Seleção recorrente
NAL Thesaurus: Rice
Plant breeding
quantitative traits.
Data Created: 2018-01-26
ISSN: 1676-5680
Appears in Collections:Artigo em periódico indexado (CNPAF)

Files in This Item:
File Description SizeFormat 
CNPAF2017gmropmj.pdf751,7 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace