Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1108708
Título: | Uso da mineração de dados na classificação do algodão utilizando séries-temporais de imagens MODIS. |
Autoria: | WERNER, J. P. S.![]() ![]() ESQUERDO, J. C. D. M. ![]() ![]() OLIVEIRA, S. R. de M. ![]() ![]() |
Afiliação: | JOÃO PAULO SAMPAIO WERNER; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA. |
Ano de publicação: | 2019 |
Referência: | In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 19., 2019, Santos. Anais... São José dos Campos: INPE, 2019. |
Páginas: | 4 p. |
Conteúdo: | RESUMO. O objetivo do trabalho foi avaliar o uso de técnicas de mineração de dados extraídos de séries temporais de índices vegetativos do sensor MODIS para a classificação de padrões temporais do cultivo do algodão herbáceo. A partir da série temporal de imagens, foram gerados perfis espectro-temporais e extraídas 11 métricas fenológicas na forma de imagens de decomposição. Com as informações das métricas fenológicas e dados de referência terrestre, técnicas de mineração de dados foram aplicadas para gerar regras de classificação que, posteriormente, foram utilizadas para separar os padrões com cultivo de algodão de outras coberturas vegetais. Os resultados encontrados demonstraram a capacidade dos modelos para discriminar padrões de algodão de outras coberturas. |
NAL Thesaurus: | Vegetation index Time series analysis |
Palavras-chave: | Mineração de dados Índice de vegetação Métricas fenológicas Árvore de decisão TIMESAT Séries temporais Data mining Phenological metrics Decision tree |
ISBN: | 978-85-17-00097-3 |
Notas: | Editores: Douglas Francisco Marcolino Gherardi, Ieda Del´Arco Sanches, Luiz Eduardo Oliveira e Cruz de Aragão. SBSR 2019. |
Tipo do material: | Artigo em anais e proceedings |
Acesso: | openAccess |
Aparece nas coleções: | Artigo em anais de congresso (CNPTIA)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
PLUsomineracaoSBSR2019.pdf | 578.9 kB | Adobe PDF | ![]() Visualizar/Abrir |