Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123627
Research center of Embrapa/Collection: Embrapa Informática Agropecuária - Artigo em periódico indexado (ALICE)
Date Issued: 2020
Type of Material: Artigo em periódico indexado (ALICE)
Authors: SANTOS, M. A. S.
ASSAD, E. D.
GURGEL, A. C.
OMAR, N.
Additional Information: MARCIO A. S. SANTOS, Mackenzie Presbyterian University; EDUARDO DELGADO ASSAD, CNPTIA; ANGELO C. GURGEL, FGV; NIZAM OMAR, Mackenzie Presbyterian University.
Title: Similarity metrics enforcement in seasonal agriculture areas classification.
Publisher: Remote Sensing, v. 12, n. 11, p. 1-14, 2020.
Language: Ingles
Notes: Article 1791.
Keywords: Aprendizado de máquina
Dinâmica de uso da terra
Time series similarity metrics
Land use dynamics
Description: Abstract. Accurate identification of agriculture areas is a key piece in the building blocks strategy of environment and economics resources management. The challenge requires one to deal with landscape complexity, sensors and data acquisition limitations through a proper computational approach to timely deliver accurate information. In this paper, a Machine Learning (ML) based method to enhance the classification process of areas dedicated to seasonal crops (row crops) is proposed. To this objective, a broad exploration of data from Moderate Resolution Imaging Spectro-radiometer sensors (MODIS) was made using pixel time-series combined with time-series similarity metrics. The experiment was performed in Brazil, covered 61% of the total agriculture areas, five different states specifically selected to demonstrate biome differences and the country´s diversity. The validation was made against independent data from EMBRAPA (Brazilian Agriculture Research Corporation), RapidEye Sensor Scene Maps. For the eight tested algorithms, the results were enhanced and demonstrate that the method can rate the classification accuracy up to 98.5%, average value for the tested algorithms. The process can be used to timely monitor large areas dedicated to row crops and enables the application of state of art classification techniques, two levels classification process, to identify crops according to each specific need within the areas.
Thesagro: Agricultura
Sensoriamento Remoto
Uso da Terra
NAL Thesaurus: Agriculture
Remote sensing
Land use
Time series analysis
Data Created: 2020-07-06
Appears in Collections:Artigo em periódico indexado (CNPTIA)

Files in This Item:
File Description SizeFormat 
AP-Similarity-metrics-2020.pdf5,04 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace