Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1125045
Título: Exploring the potential of high-resolution PlanetScope imagery for pasture biomass estimation in an integrated crop-livestock system.
Autor: REIS, A. A. dos
SILVA, B. C.
WERNER, J. P. S.
SILVA, Y. F.
ROCHA, J. V.
FIGUEIREDO, G. K. D. A.
ANTUNES, J. F. G.
ESQUERDO, J. C. D. M.
COUTINHO, A. C.
LAMPARELLI, R. A. C
MAGALHÃES, P. S. G.
Afiliación: Feagri, Nipe/Unicamp; Feagri/Unicamp; Feagri/Unicamp; Feagri/Unicamp; Feagri/Unicamp; Feagri/Unicamp; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; Nipe/Unicamp; Nipe/Unicamp.
Año: 2020
Referencia: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 42-3, W12, p. 419-424, 2020.
Descripción: ABSTRACT: Pasture biomass information is essential to monitor forage resources in grazed areas, as well as to support grazing management decisions. The increasing temporal and spatial resolutions offered by the new generation of orbital platforms, such as Planet CubeSat satellites, have improved the capability of monitoring pasture biomass using remotely-sensed data. In a preliminary study, we investigated the potential of spectral variables derived from PlanetScope imagery to predict pasture biomass in an area of Integrated Crop-Livestock System (ICLS) in Brazil. Satellite and field data were collected during the same period (May - August 2019) for calibration and validation of the relation between predictor variables and pasture biomass using the Random Forest (RF) regression algorithm. We used as predictor variables 24 vegetation indices derived from PlanetScope imagery, as well as the four PlanetScope bands, and field management information. Pasture biomass ranged from approximately 24 to 656 g.m-2, with a coefficient of variation of 54.96%. Near Infrared Green Simple Ratio (NIR/Green), Green Leaf Algorithm (GLA) vegetation indices and days after sowing (DAS) are among the most important variables as measured by the RF Variable Importance metric in the best RF model predicting pasture biomass, which resulted in Root Mean Square Error (RMSE) of 52.04 g.m-2 (32.75%). Accurate estimates of pasture biomass using spectral variables derived from PlanetScope imagery are promising, providing new insights into the opportunities and limitations related to the use of PlanetScope imagery for pasture monitoring.
Thesagro: Biomassa
Pastagem
NAL Thesaurus: Vegetation index
Biomass
Pasture management
Palabras clave: Integração lavoura-pecuária
Aprendizado de máquina
Floresta aleatória
Índice de vegetação
Integrated crop-livestock system
Machine Learning
Pastureland
Vegetation Indices
Dove satellites
Nano-Satellites
Random Forest
DOI: https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-419-2020
Notas: Publicado também em: IEEE LATIN AMERICAN GRSS; ISPRS REMOTE SENSING CONFERENCE, Santiago, 2020. Proceedings... [Piscataway]: IEEE, 2020. p. 675-680. LAGIRS 2020.
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em anais de congresso (CNPTIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
PC-Exploring-potential-2020-periodico.pdf1.36 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace