Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1127885
Título: Cattle detection using oblique UAV images.
Autor: BARBEDO, J. G. A.
KOENIGKAN, L. V.
SANTOS, P. M.
Afiliación: JAYME GARCIA ARNAL BARBEDO, CNPTIA; LUCIANO VIEIRA KOENIGKAN, CNPTIA; PATRICIA MENEZES SANTOS, CPPSE.
Año: 2020
Referencia: Drones, v. 4, n. 4, p. 1-9, Dec. 2020.
Descripción: The evolution in imaging technologies and artificial intelligence algorithms, coupled with improvements in UAV technology, has enabled the use of unmanned aircraft in a wide range of applications. The feasibility of this kind of approach for cattle monitoring has been demonstrated by several studies, but practical use is still challenging due to the particular characteristics of this application, such as the need to track mobile targets and the extensive areas that need to be covered in most cases. The objective of this study was to investigate the feasibility of using a tilted angle to increase the area covered by each image. Deep Convolutional Neural Networks (Xception architecture) were used to generate the models for animal detection. Three experiments were carried out: (1) five different sizes for the input images were tested to determine which yields the highest accuracies; (2) detection accuracies were calculated for different distances between animals and sensor, in order to determine how distance influences detectability; and (3) animals that were completely missed by the detection process were individually identified and the cause for those errors were determined, revealing some potential topics for further research. Experimental results indicate that oblique images can be successfully used under certain conditions, but some practical limitations need to be addressed in order to make this approach appealing.
Thesagro: Gado
NAL Thesaurus: Unmanned aerial vehicles
Cattle
Palabras clave: Redes neurais
Redes neurais convolucionais
Aprendizado profundo
Veículos aéreos não tripulados
Convolutional neural network
Deep learning
DOI: 10.3390/drones4040075
Notas: Article 75.
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (CNPTIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AP-Cattle-detection-Drones-2020.pdf1.29 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace