Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1139292
Title: Foliar application of potassium nitrate induces tolerance to water deficit in pre-flowering sorghum plants.
Authors: ÁVILA, R. G.
MAGALHAES, P. C.
SILVA, E. M. da
ALVARENGA, A. A. de
REIS, C. O. dos
CUSTÓDIO. A. M.
JAKELAITIS, A.
SOUZA, T. C. de
Affiliation: RONIEL GERALDO ÁVILA, Universidade Federal de Lavras; PAULO CESAR MAGALHAES, CNPMS; EDER MARCOS DA SILVA, Universidade Federal de Lavras; AMAURI ALVES DE ALVARENGA, Universidade Federal de Lavras; CAROLINE OLIVEIRA DOS REIS, Universidade Federal de Lavras; ALDO MAX CUSTÓDIO, Instituto Federal Goiano; ADRIANO JAKELAITIS, Instituto Federal Goiano; THIAGO CORRÊA DE SOUZA, Universidade Federal de Alfenas.
Date Issued: 2022
Citation: Acta Scientiarum. Agronomy, v. 44, n. 1, e53069, 2022.
Description: The objective of this study was to evaluate the the ability of foliar application of potassium nitrate (KNO3) to induce water deficit tolerance in sorghum plants (Sorghum bicolor cv. P898012) subjected to water deficit at pre-flowering. The experiment was conducted under greenhouse conditions with 4 treatments: field capacity (FC), water deficit (WD), field capacity + KNO3 (FC + KNO3), and water deficit + KNO3 (WD + KNO3). Two foliar applications of 3% (m/v) KNO3 were made, the first on day zero of stress and the second on the fifth day. All analyses were performed after 12 days of stress (end of stress). Foliar application of KNO3 to irrigated plants led to increases in relative chlorophyll content, photosynthetic rate, stomatal conductance, transpiration, and carboxylation efficiency. It also induced increases in leaf concentrations of P, Mg, S, Cu, and Fe, in addition to height growth. Under water deficit conditions, plants treated with KNO3 presented higher relative chlorophyll content, leaf area, photosynthetic rate, stomatal conductance, transpiration, carboxylation efficiency, and higher levels of P, K, Mg, S, Cu, and Fe than those not treated with KNO3. The morphometry of the root system was not altered by the treatments. In addition, plants treated with KNO3 under water deficit conditions showed higher growth and a grain yield 32.2% higher than those that did not receive KNO3. These results demonstrated that KNO3 applied to the leaves induced water deficit tolerance in sorghum plants subjected to severe water stress at pre-flowering.
Thesagro: Resistência a Seca
Sorghum Bicolor
Sorgo
Keywords: Nutrição mineral
Troca gasosa foliar
Fluorescência da clorofila
WinRhizo
Mineral nutrition
Drought resistance
Leaf gas exchange
Chlorophyll fluorescence
Type of Material: Artigo de periódico
Access: openAccess
Appears in Collections:Artigo em periódico indexado (CNPMS)

Files in This Item:
File Description SizeFormat 
Foliar-application.pdf449,76 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace