Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142572
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorOLIVEIRA, L. A. de
dc.contributor.authorSILVA, C. P. da
dc.contributor.authorSILVA, A. Q. da
dc.contributor.authorMENDES, C. T. E.
dc.contributor.authorNUVUNGA, J. J.
dc.contributor.authorNUNES, J. A. R.
dc.contributor.authorPARRELLA, R. A. da C.
dc.contributor.authorBALESTE, M.
dc.contributor.authorBUENO FILHO, J. S. de S.
dc.date.accessioned2022-06-15T10:20:15Z-
dc.date.available2022-06-15T10:20:15Z-
dc.date.created2022-05-02
dc.date.issued2022
dc.identifier.citationCrop Science, v. 62, p. 982-996, 2022.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1142572-
dc.descriptionThe dissection of genotype×environment interaction (GEI) is a crucial aspect ofthe final stages of plant breeding pipelines and recommendation of cultivars. Linear-bilinear models used to analyze this interaction, such as the additive main effectsand multiplicative interaction (AMMI) and genotype plus GEI (GGE), often assumehomogeneity of the residual variances across environments which affects the esti-mates and therefore, interpretations and conclusions. Our main objective was topropose a GGE model that considers heteroscedasticity across environments usingBayesian inference and to evaluate its implications in the interpretation of real andsimulated data. The GGE model assuming common variance was also fitted for com-parison purposes. The great flexibility of the Bayesian inference is transferred to thebiplots, allowing the construction of credible regions for genotypic and environmen-tal scores. The inference on the stability and adaptability of genotypes might changewhen heteroscedasticity is ignored. When real data are used, different patterns of cor-relations between environments also affect the representativeness and discriminationof the target environment. The modeling of heteroscedasticity allowed the clusteringof environments into subgroups, with similar effects for GEI. The proposed GGEmodel was more adequate and realistic to deal with scenarios of heterogeneous vari-ance in multienvironment trials, which can be useful for exploiting the GEI.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectInteração meio ambiente
dc.subjectModelo misto
dc.subjectEnsaio de rendimento
dc.subjectEnsaio de cultivar
dc.subjectEstabilidade
dc.titleBayesian GGE model for heteroscedastic multienvironmental trials.
dc.typeArtigo de periódico
dc.subject.thesagroMelhoramento Vegetal
dc.subject.thesagroVariedade
dc.subject.thesagroGenótipo
riaa.ainfo.id1142572
riaa.ainfo.lastupdate2022-06-14
dc.identifier.doihttps://doi.org/10.1002/csc2.20696
dc.contributor.institutionLUCIANO ANTONIO DE OLIVEIRA, Universidade Federal da Grande Dourados; CARLOS PEREIRA DA SILVA, Universidade Federal de Lavras; ALESSANDRA QUERINO DA SILVA, Universidade Federal da Grande Dourados; CRISTIAN TIAGO ERAZO MENDES, Universidade Federal de Lavras; JOEL JORGE NUVUNGA, Universidade Eduardo Mondlane; JOSÉ AIRTON RODRIGUES NUNES, Universidade Federal de Lavras; RAFAEL AUGUSTO DA COSTA PARRELLA, CNPMS; MARCIO BALESTE, Universidade Federal de Lavras; JÚLIO SÍLVIO DE SOUSA BUENO FILHO, Universidade Federal de Lavras.
Aparece en las colecciones:Artigo em periódico indexado (CNPMS)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Bayesian-GGE-model-for-heteroscedastic.pdf1.53 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace