Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142848
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | SILVA, C. A. | |
dc.contributor.author | GUERRISI, G. | |
dc.contributor.author | DEL FRATE, F. | |
dc.contributor.author | SANO, E. E. | |
dc.date.accessioned | 2022-05-10T20:12:48Z | - |
dc.date.available | 2022-05-10T20:12:48Z | - |
dc.date.created | 2022-05-10 | |
dc.date.issued | 2022 | |
dc.identifier.citation | European Journal of Remote Sensing, v. 55, n. 1, 2022. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142848 | - |
dc.description | Optical-based near-real time deforestation alert systems in the Brazilian Amazon are ineffective in the rainy season. This study identify clear-cut deforested areas through Neural Network (NN) algorithm based on C-band, VV- and VH-polarized, Sentinel-1 images. Statistical parameters of backscatter coefficients (mean, standard deviation, and the difference between maximum and minimum values ? MMD) were computed from 30 Sentinel-1 images, from 2019, used as input parameters of the NN classifier. The samples were manually selected, including forested and deforested areas. After deforestation, mean backscatter signals decreased on the average of 2 dB for VV and 2.3 dB for VH from May to September?October. A Multi-Layer Perceptron (MLP) network was used for detecting near-real time forest disturbances larger than 2 ha. Case studies were performed for both polarizations considered the following input sets to the MLP: mean; mean and standard deviation; mean and MMD; and mean, standard deviation, and MMD. For the 2019 dataset, the latter showed the best performance of the NN algorithm with accuracy and F1 score of 99%. Automatic extraction using 2018 Sentinel-1 images reached accuracy and F1 score of 89% with the MapBiomas reference data and accuracy of 81% and F1 score of 79% with the PRODES reference data. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.subject | Floresta Amazônica | |
dc.subject | Rede neural | |
dc.subject | Desflorestamento | |
dc.subject | Extração automática de imagens | |
dc.title | Near-real time deforestation detection in the Brazilian Amazon with Sentinel-1 and neural networks. | |
dc.type | Artigo de periódico | |
dc.subject.thesagro | Floresta Tropical | |
dc.subject.thesagro | Desmatamento | |
dc.format.extent2 | p. 129-149 | |
riaa.ainfo.id | 1142848 | |
riaa.ainfo.lastupdate | 2022-05-10 | |
dc.contributor.institution | CLAUDIA ARANTES SILVA; GIORGIA GUERRISI; FABIO DEL FRATE; EDSON EYJI SANO, CPAC. | |
Aparece nas coleções: | Artigo em periódico indexado (CPAC)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Sano-Near-real-time-deforestation-detection-in-the.pdf | 23.35 MB | Adobe PDF | ![]() Visualizar/Abrir |