Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151204| Title: | Deep learning regression approaches applied to estimate tillering in tropical forages using mobile phone images. |
| Authors: | SANTOS![]() ![]() MARCATO JUNIOR, J. ![]() ![]() ZAMBONI, P. ![]() ![]() SANTOS, M. F. ![]() ![]() JANK, L. ![]() ![]() CAMPOS, E. ![]() ![]() MATSUBARA, E. T. ![]() ![]() |
| Affiliation: | LUIZ SANTOS, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; JOSÉ MARCATO JUNIOR, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; PEDRO ZAMBONI, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; MATEUS FIGUEIREDO SANTOS, CNPGC; LIANA JANK, CNPGC; EDILENE CAMPOS, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL; EDSON TAKASHI MATSUBARA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL. |
| Date Issued: | 2022 |
| Citation: | Sensors, v. 22, article 4116, 2022. |
| Description: | We assessed the performance of Convolutional Neural Network (CNN)-based approaches using mobile phone images to estimate regrowth density in tropical forages. We generated a dataset composed of 1124 labeled images with 2 mobile phones 7 days after the harvest of the forage plants. Six architectures were evaluated, including AlexNet, ResNet (18, 34, and 50 layers), ResNeXt101, and DarkNet. The best regression model showed a mean absolute error of 7.70 and a correlation of 0.89. Our findings suggest that our proposal using deep learning on mobile phone images can successfully be used to estimate regrowth density in forages. |
| Thesagro: | Banco de Germoplasma Forragem Panicum Maximum Tecnologia |
| NAL Thesaurus: | Forage Mechanical harvesting Regression analysis Tillering |
| ISSN: | 1424-8220 |
| DOI: | https://doi.org/10.3390/s22114116 |
| Notes: | Na publicação: Mateus Figueiredo Santos. |
| Type of Material: | Artigo de periódico |
| Access: | openAccess |
| Appears in Collections: | Artigo em periódico indexado (CNPGC)![]() ![]() |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Deep-learning-regression-2022.pdf | 13.29 MB | Adobe PDF | ![]() View/Open |








