Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1157235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHIDALGO CHÁVEZ, D. W.
dc.contributor.authorSILVA, F. L. C. DA
dc.contributor.authorPINTO, R. V.
dc.contributor.authorCARVALHO, C. W. P. de
dc.contributor.authorFREITAS-SILVA, O.
dc.date.accessioned2023-10-16T19:25:03Z-
dc.date.available2023-10-16T19:25:03Z-
dc.date.created2023-10-16
dc.date.issued2023
dc.identifier.citationCyTA: Journal of Food, v. 21, n. 1, p. 606-613, 2023.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1157235-
dc.descriptionThis article describes simple methods to group images including principal component analysis (PCA) and hierarchical clustering of principal components (HCPC). Images of expanded and low expanded extrudates were processed using two optimization alternatives: a) image size reduction (from 2126 to 25 pixels); and b) grayscale conversion before size reduction. After applying PCA and HCPC, all tests yielded consistently similar results with the same PCA distribution and identical HCPC groups. Furthermore, expanded and low expanded extrudates formed groups with their respective peers. The RAM allocated to images and the time required to process them was reduced from 1727 Mb to less than 5 Mb and from ~ 2000s to just 0.1s, respectively. These results demonstrate the e feasibility of using these two simple multivariate statistical techniques for image classification.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectImage classification
dc.titleStreamlined approaches for image classification using principal component analysis and hierarchical clustering of extrudates from coffee and sorghum blends.
dc.typeArtigo de periódico
dc.subject.nalthesaurusImage analysis
dc.subject.nalthesaurusPrincipal component analysis
riaa.ainfo.id1157235
riaa.ainfo.lastupdate2023-10-16
dc.identifier.doihttps://doi.org/10.1080/19476337.2023.2263513
dc.contributor.institutionDAVY WILLIAM HIDALGO CHÁVEZ, UFRRJ; FELIPE LEITE COELHO DA SILVA, UFRRJ; RENAN VICENTE PINTO, UFRRJ; CARLOS WANDERLEI PILER DE CARVALHO, CTAA; OTNIEL FREITAS SILVA, CTAA.
Appears in Collections:Artigo em periódico indexado (CTAA)


FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace