Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1159297
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorTOURNE, D. C. M.
dc.contributor.authorBALLESTER, M. V. R.
dc.contributor.authorJAMES, P. M. A.
dc.contributor.authorMARTORANO, L. G.
dc.contributor.authorGUEDES, M. C.
dc.contributor.authorTHOMAS, E.
dc.date.accessioned2023-12-07T17:32:19Z-
dc.date.available2023-12-07T17:32:19Z-
dc.date.created2023-12-07
dc.date.issued2019
dc.identifier.citationEcology and Evolution, v. 9, n. 22, p. 12357-12960, Nov. 2019.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1159297-
dc.descriptionAim: Amazon-nut (Bertholletia excelsa) is a hyperdominant and protected tree species, playing a keystone role in nutrient cycling and ecosystem service provision in Amazonia. Our main goal was to develop a robust habitat suitability model of Amazon-nut and to identify the most important predictor variables to support conservation and tree planting decisions. Localization: Amazon region, South America. Methods: We collected 3,325 unique Amazon-nut records and assembled >100 spatial predictor variables organized across climatic, edaphic, and geophysical categories. We compared suitability models using variables (a) selected through statistical techniques; (b) recommended by experts; and (c) integrating both approaches (a and b). We applied different spatial filtering scenarios to reduce overfitting. We additionally fine-tuned MAXENT settings to our data. The best model was selected through quantitative and qualitative assessments. Results: Principal component analysis based on expert recommendations was the most appropriate method for predictor selection. Elevation, coarse soil fragments, clay, slope, and annual potential evapotranspiration were the most important predictors. Their relative contribution to the best model amounted to 75%. Filtering of the presences within a radius of 10 km displayed lowest overfitting, a satisfactory omission rate and the most symmetric distribution curve. Our findings suggest that under current environmental conditions, suitable habitat for Amazon-nut is found across 2.3 million km2, that is, 32% of the Amazon Biome. Main conclusion: The combination of statistical techniques with expert knowledge improved the quality of our suitability model. Topographic and soil variables were the most important predictors. The combination of predictor variable selection, fine-tuning of model parameters and spatial filtering was critical for the construction of a reliable habitat suitability model.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectExpert knowledge
dc.subjectMaximum entropy
dc.subjectModel evaluation
dc.subjectProtected Amazonian species
dc.subjectSpatial filtering
dc.subjectSpecies distribution model
dc.subjectConhecimento especializado
dc.subjectEntropia máxima
dc.subjectAvaliação de modelo
dc.subjectAnálise de componentes principais
dc.subjectFiltragem espacial
dc.subjectModelo de distribuição de espécie
dc.titleStrategies to optimize modeling habitat suitability of Bertholletia excelsa in the Pan-Amazonia.
dc.typeArtigo de periódico
dc.subject.thesagroCastanha
dc.subject.nalthesaurusPrincipal component analysis
riaa.ainfo.id1159297
riaa.ainfo.lastupdate2023-12-07
dc.identifier.doihttps://doi.org/10.1002/ece3.5726
dc.contributor.institutionDAIANA C. M. TOURNE, USP; MARIA V. R. BALLESTER, USP; PATRICK M. A. JAMES, UNIVERSITY OF MONTRÉAL; LUCIETA GUERREIRO MARTORANO, CPATU; MARCELINO CARNEIRO GUEDES, CPAF-AP; EVERT THOMAS, BIOVERSITY INTERNATIONAL, REGIONAL OFFICE FOR THE AMERICAS.
Aparece nas coleções:Artigo em periódico indexado (CPATU)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Strategies-to-optimize.pdf2.49 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace