Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1160538
Título: Comparing forest restoration canopy cover measurements using RGB and multispectral sensors onboard drones.
Autor: ALBUQUERQUE, R. W.
VIEIRA, D. L. M.
VICENTE, L. E.
ARAUJO, L. S. de
FERREIRA, M. E.
GROHMANN, C. H.
Afiliación: RAFAEL WALTER ALBUQUERQUE, UNIVERSIDADE DE SÃO PAULO; DANIEL LUIS MASCIA VIEIRA, Cenargen; LUIZ EDUARDO VICENTE, CNPMA; LUCIANA SPINELLI DE ARAUJO, CNPMA; MANUEL EDUARDO FERREIRA, UNIVERSIDADE FEDERAL DE GOIÁS; CARLOS HENRIQUE GROHMANN, UNIVERSIDADE DE SÃO PAULO.
Año: 2023
Referencia: In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 20., 2023, Florianópolis. Anais [...]. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 2023. Ref. 155275.
Páginas: p. 53-56.
Descripción: Abstract: Remotely Piloted Aircrafts (RPA) coupled with Red-Green-Blue (RGB) sensors have a high potential to monitor Forest Restoration (FR), but multispectral sensors onboard RPA are more expensive and still demand more studies when applied to FR monitoring. This work aims to compare an RGB and a multispectral sensor capacity to measure the canopy cover of a FR project. Four canopy cover methods were evaluated using: the point cloud data generated by the RGB sensor; a vegetation index for RGB sensors; the Normalized Difference Vegetation Index (NDVI); and the Near Infra-Red band (Nir) only. The point cloud data method was the most accurate and the only one that presented all accuracies greater than 0.9. However, the multispectral sensor presented more potential for scientific research because it seems to be capable of detecting different photosynthetic activities on the trees and, consequently, different responses to FR treatments, which should be confirmed by future studies.
Thesagro: Reflorestamento
NAL Thesaurus: Remote sensing
Forest restoration
Environmental monitoring
Palabras clave: Remotely Piloted Aircrafts
Unmanned Aerial Vehicle
Red-Green-Blue
Infra-Red
Forest Restoration Monitoring
Tipo de Material: Artigo em anais e proceedings
Acceso: openAccess
Aparece en las colecciones:Artigo em anais de congresso (CNPMA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Vicente-Comparing-forest-2023.pdf657.95 kBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace