Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1160827
Título: | Evaluating multiple regressors for the yield of orange orchards. |
Autoria: | SOUZA, K. X. S. de![]() ![]() TERNES, S. ![]() ![]() CAMARGO NETO, J. ![]() ![]() SANTOS, T. T. ![]() ![]() MOREIRA, A. S. ![]() ![]() KOENIGKAN, L. V. ![]() ![]() SOUZA, R. de ![]() ![]() |
Afiliação: | KLEBER XAVIER SAMPAIO DE SOUZA, CNPTIA; SONIA TERNES, CNPTIA; JOAO CAMARGO NETO, CNPTIA; THIAGO TEIXEIRA SANTOS, CNPTIA; ALECIO SOUZA MOREIRA, CNPMF; LUCIANO VIEIRA KOENIGKAN, CNPTIA; ROBERTA DE SOUZA. |
Ano de publicação: | 2023 |
Referência: | In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 14., 2023, Natal. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023. p. 262-269. |
Conteúdo: | In this paper, we assess the effectiveness of various machine learning regressors for yield forecasting based on fruit detection in images captured within the orchard |
Thesagro: | Laranja |
NAL Thesaurus: | Oranges Computer vision Image analysis |
Palavras-chave: | Visão computacional Identificação automática de frutas Automatic fruit identification |
ISSN: | 2177-9724 |
Digital Object Identifier: | https://doi.org/10.5753/sbiagro.2023.26567 |
Notas: | SBIAgro 2023. |
Tipo do material: | Artigo em anais e proceedings |
Acesso: | openAccess |
Aparece nas coleções: | Artigo em anais de congresso (CNPTIA)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
AA-Evaluating-multiple-SBIAgro-2023.pdf | 207.34 kB | Adobe PDF | ![]() Visualizar/Abrir |