Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1161305
Título: | Detecting aquaculture with deep learning in a low-data setting. |
Autoria: | GREENSTREET, L.![]() ![]() FAN, J. ![]() ![]() PACHECO, F. S. ![]() ![]() BAI, Y. ![]() ![]() UMMUS, M. E. ![]() ![]() DORIA, C. ![]() ![]() BARROS, N. O. ![]() ![]() FORSBERG, B. R. ![]() ![]() XU, X. ![]() ![]() FLECKER, A. ![]() ![]() GOMES, C. ![]() ![]() |
Afiliação: | LAURA GREENSTREET, CORNELL UNIVERSITY; JOSHUA FAN, CORNELL UNIVERSITY; FELIPE SIQUEIRA PACHECO, CORNELL UNIVERSITY; YIWEI BAI, CORNELL UNIVERSITY; MARTA EICHEMBERGER UMMUS, CNPASA; CAROLINA DORIA, UNIVERSIDADE FEDERAL DE RONDÔNIA; NATHAN OLIVEIRA BARROS, UNIVERSIDADE FEDERAL DE JUIZ DE FORA; BRUCE R. FORSBERG, INPA; XIANGTAO XU, CORNELL UNIVERSITY; ALEXANDER FLECKER, CORNELL UNIVERSITY; CARLA GOMES, CORNELL UNIVERSITY. |
Ano de publicação: | 2023 |
Referência: | In: SIGKDD FRAGILE EARTH WORKSHOP, 2023, Long Beach. |
Conteúdo: | Aquaculture is growing rapidly in the Amazon basin and detailed spatial information is needed to understand the trade-offs between food production, economic development, and environmental impacts. Large open-source datasets of medium resolution satellite imagery offer the potential for mapping a variety of infrastructure, including aquaculture ponds. However, there are many challenges utilizing this data, including few labelled examples, class imbalance, and spatial bias. We find previous rule-based methods for mapping aquaculture perform poorly in the Amazon. By incorporating temporal information through percentile data, we show deep learning models can outperform previous methods by as much as 15% with as few as 300 labelled examples. Further, generalization to unseen regions can be improved by incorporating segmentation information through masked pooling and using contrastive pretraining to harness large quantities of unlabelled data. |
Thesagro: | Sensoriamento Remoto Aquicultura |
NAL Thesaurus: | Aquaculture Remote sensing Digital images Neural networks |
Palavras-chave: | Image segmentation Image classification Attention Contrastive learning Representation learning Convolutinal neural networks |
Tipo do material: | Artigo em anais e proceedings |
Acesso: | openAccess |
Aparece nas coleções: | Artigo em anais de congresso (CNPASA)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
detecting-aquaculture-with-dee.pdf | 1.15 MB | Adobe PDF | ![]() Visualizar/Abrir |