Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1162360
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorTESHOME, M.
dc.contributor.authorBRAZ, E. M.
dc.contributor.authorTORRES, C. M. M. E.
dc.contributor.authorRAPTIS, D. I.
dc.contributor.authorMATTOS, P. P. de
dc.contributor.authorTEMESGEN, H.
dc.contributor.authorRUBIO-CAMACHO, E. A.
dc.contributor.authorSILESHI, G. W.
dc.date.accessioned2024-02-28T17:32:14Z-
dc.date.available2024-02-28T17:32:14Z-
dc.date.created2024-02-28
dc.date.issued2024
dc.identifier.citationForests, v. 15, n. 3, 443, p. 1-19, 2024.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1162360-
dc.descriptionTree height is a crucial variable in forestry science. In the current study, an accurate height prediction model for Juniperus procera Hochst. ex Endl. trees were developed, using a nonlinear mixed-effects modeling approach on 1215 observations from 101 randomly established plots in the Chilimo Dry Afromontane Forest in Ethiopia. After comparing 14 nonlinear models, the most appropriate base model was selected and expanded as a mixed-effects model, using the sample plot as a grouping factor, and adding stand-level variables to increase the model’s prediction ability. Using a completely independent dataset of observations, the best sampling alternative for calibration was determined using goodness-of-fit criteria. Our findings revealed that the Michaelis–Menten model outperformed the other models, while the expansion to the mixed-effects model significantly improved the height prediction. On the other hand, incorporating the quadratic mean diameter and the stem density slightly improved the model’s prediction ability. The fixed-effects of the selected model can also be used to predict the mean height of Juniperus procera trees as a marginal solution. The calibration response revealed that a systematic selection of the three largest-diameter trees at the plot level is the most effective for random effect estimation across new plots or stands.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectStand volume
dc.subjectNative tree
dc.subjectCalibração
dc.subjectTree height
dc.subjectAltura das árvores
dc.subjectModelo de predição
dc.subjectPrediction model
dc.titleMixed-effects height prediction model for Juniperus procera trees from a Dry Afromontane Forest in Ethiopia.
dc.typeArtigo de periódico
dc.subject.thesagroInventário Florestal
dc.subject.nalthesaurusForest inventory
dc.subject.nalthesaurusAllometry
dc.subject.nalthesaurusCalibration
dc.subject.nalthesaurusJuniperus procera
dc.subject.nalthesaurusforestryeng
riaa.ainfo.id1162360
riaa.ainfo.lastupdate2024-02-28
dc.identifier.doihttps://doi.org/10.3390/f15030443
dc.contributor.institutionMINDAYE TESHOME, UNIVERSIDADE FEDERAL DE VIÇOSA; EVALDO MUNOZ BRAZ, CNPF; CARLOS MOREIRA MIQUELINO ELETO TORRES, UNIVERSIDADE FEDERAL DE VIÇOSA; DIMITRIOS IOANNIS RAPTIS, INTERNATIONAL HELLENIC UNIVERSITY; PATRICIA POVOA DE MATTOS, CNPF; HAILEMARIAM TEMESGEN, OREGON STATE UNIVERSITY; ERNESTO ALONSO RUBIO-CAMACHO, INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS; GUDETA WOLDESEMAYAT SILESHI, ADDIS ABABA UNIVERSITY.
Aparece nas coleções:Artigo em periódico indexado (CNPF)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Forest-2024-Braz.pdf4.63 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace