Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1169056
Título: Assessment of uav-based deep learning for corn crop analysis in midwest Brazil.
Autor: MARTINS, J. A. C.
HIGUTI, A. Y. H.
PELLEGRIN, A. O.
JULIANO, R. S.
ARAUJO, A. M. de
PELLEGRIN, L. A.
LIESENBERG, V.
RAMOS, A. P. M.
GONÇALVES, W. N.
SANT’ANA, D. A.
PISTORI, H.
MARCATO JUNIOR, J.
Afiliación: JOSÉ AUGUSTO CORREA MARTINS, UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL
ALBERTO YOSHIRIKI HISANO HIGUTI, UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL
AIESCA OLIVEIRA PELLEGRIN, CPAP
RAQUEL SOARES JULIANO, CPAP
ADRIANA MELLO DE ARAUJO, CPAP
LUIZ ALBERTO PELLEGRIN, CPAP
VERALDO LIESENBERG, UNIVERSIDADE DO ESTADO DE SANTA CATARINA
ANA PAULA MARQUES RAMOS, UNIVERSIDADE DO OESTE PAULISTA
WESLEY NUNES GONÇALVES, UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL
DIEGO ANDRÉ SANT’ANA, INSTITUTO FEDERAL DE MATO GROSSO DO SUL
HEMERSON PISTORI, UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL
JOSÉ MARCATO JUNIOR, UNIVERSIDADE FEDERAL DO MATO GROSSO DO SUL.
Año: 2024
Referencia: Agriculture, v. 14, n. 11, p. 1-15, 2024.
Descripción: Abstract: Crop segmentation, the process of identifying and delineating agricultural fields or specific crops within an image, plays a crucial role in precision agriculture, enabling farmers and public managers to make informed decisions regarding crop health, yield estimation, and resource allocation in Midwest Brazil. The crops (corn) in this region are being damaged by wild pigs and other diseases. For the quantification of corn fields, this paper applies novel computer-vision techniques and a new dataset of corn imagery composed of 1416 256 × 256 images and corresponding labels. We flew nine drone missions and classified wild pig damage in ten orthomosaics in different stages of growth using semi-automatic digitizing and deep-learning techniques. The period of crop-development analysis will range from early sprouting to the start of the drying phase. The objective of segmentation is to transform or simplify the representation of an image, making it more meaningful and easier to interpret. For the objective class, corn achieved an IoU of 77.92%, and for background 83.25%, using DeepLabV3+ architecture, 78.81% for corn, and 83.73% for background using SegFormer architecture. For the objective class, the accuracy metrics were achieved at 86.88% and for background 91.41% using DeepLabV3+, 88.14% for the objective, and 91.15% for background using SegFormer.
Thesagro: Agricultura de Precisão
Milho
Javali
Comportamento Animal
Dano
Fotografia
NAL Thesaurus: Wild boars
Animal behavior
Crop damage
Precision agriculture
Palabras clave: Drone
DOI: https://doi.org/10.3390/agriculture14112029
Notas: Online first.
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (CPAP)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Assessment-of-UAV-Based-Deep-Learning-for-Corn-Crop-Analysis-in-Midwest-Brazil.pdf6.06 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace