Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1174052
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSAMPAIO, B. S.
dc.contributor.authorFACURE, M. H. M.
dc.contributor.authorANDRE, R. S.
dc.contributor.authorCORREA, D. S.
dc.contributor.authorALVES, T. V.
dc.contributor.authorMERCANTE, L. A.
dc.date.accessioned2025-03-19T20:28:27Z-
dc.date.available2025-03-19T20:28:27Z-
dc.date.created2025-03-19
dc.date.issued2025
dc.identifier.citationACS Omega, v.10, 2025.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1174052-
dc.descriptionABSTRACT: Developing sensitive sensors to trimethylamine (TMA) remains a topic of great interest in areas such as food quality analysis and disease biomarkers. To address this issue, chemiresistive sensors were proposed using graphene quantum dots (GQDs) with different proportions of hydroxyl (GQDs-OH), epoxy (GQDs-epoxy), and carboxyl (GQDs-COOH) groups. These materials exhibited different sensitivities to TMA, with GQDs-OH being the most sensitive, presenting a detection limit of 0.3 ppm and a response of about 4 and 2.5 times higher than those of GQDs-COOH and GQDs-Epoxy, respectively. This difference in sensitivity was elucidated by building, based on density functional theory calculations, potential energy curves of the interaction between TMA and three GQD models. Noncovalent interaction and atoms in molecular analysis were also used to explain the difference in interaction in each model. Our results highlight that the proportion of the oxygen functional groups has a major role in modulating the sensitivity against TMA, with the hydroxyl group providing the greater sensitivity. This was elucidated through computational simulations, which also explained the lower sensitivity of the other materials. Our work serves as a practical guide, demonstrating the importance of coupling computational and experimental methods to achieve a deeper understanding of sensing .
dc.language.isoeng
dc.rightsopenAccess
dc.subjectComputational Simulations
dc.subjectSynthesis of the GQDs
dc.titleTheoretical and Experimental Insights into the Chemiresistive Sensing Response of Graphene Quantum Dots: The Role of Oxygen Functional Groups.
dc.typeArtigo de periódico
dc.format.extent27831−7838
riaa.ainfo.id1174052
riaa.ainfo.lastupdate2025-03-19
dc.identifier.doihttps://doi.org/10.1021/acsomega.4c08588
dc.contributor.institutionUNIVERSIDADE FEDERAL DA BAHIA (UFBA)
dc.contributor.institutionMURILO HENRIQUE MOREIRA FACURE, UNIVERSIDADE FEDERAL DE SÃO CARLOSeng
dc.contributor.institutionRAFAELA DA SILVEIRA ANDRE, UNIVERSIDADE BRASILeng
dc.contributor.institutionDANIEL SOUZA CORREA, CNPDIAeng
dc.contributor.institutionUNIVERSIDADE FEDERAL DA BAHIA (UFBA)eng
dc.contributor.institutionUNIVERSIDADE FEDERAL DA BAHIA (UFBA).eng
Aparece en las colecciones:Artigo em periódico indexado (CNPDIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
P-Theoretical-and-Experimental-Insights-into-the-Chemiresistive.pdf5.63 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace