Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1175452
Título: Performance of Land Use and Land Cover Classification Models in Assessing Agricultural Behavior in the Alagoas Semi-Arid Region.
Autoria: SILVA, J. L. P. DA
ARAÚJO JÚNIOR, G. DO N.
SILVA JUNIOR, F. B. DA
SILVA, T. G. F. DA
SILVA, J. B. A. DA
SCHEIBEL, C. H.
SILVA, M. V. DA
MINGOTI, R.
GIONGO, P. R.
ALMEIDA, A. C. DOS S.
Afiliação: JOSÉ LUCAS PEREIRA DA SILVA, UNIVERSIDADE FEDERAL DE ALAGOAS; GEORGE DO NASCIMENTO ARAÚJO JÚNIOR, UNIVERSIDADE FEDERAL DE ALAGOAS; FRANCISCO BENTO DA SILVA JUNIOR, UNIVERSIDADE FEDERAL DE ALAGOAS; THIERES GEORGE FREIRE DA SILVA, UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO; JÉSSICA BRUNA ALVES DA SILVA, UNIVERSIDADE FEDERAL DE ALAGOAS; CHRISTOPHER HORVATH SCHEIBEL, UNIVERSIDADE FEDERAL DE ALAGOAS; MARCOS VINÍCIUS DA SILVA, UNIVERSIDADE FEDERAL DO MARANHÃO; RAFAEL MINGOTI, CNPM; PEDRO ROGERIO GIONGO, UNIVERSIDADE FEDERAL DE GOIÁS; ALEXSANDRO CLAUDIO DOS SANTOS ALMEIDA, UNIVERSIDADE FEDERAL DE ALAGOAS.
Ano de publicação: 2025
Referência: AgriEngineering, v. 7, n. 5, 2025.
Conteúdo: Abstract: The scarcity of information on agricultural development in the semi-arid region of Alagoas limits the spatial understanding of this activity. Government data are generally numerical and lack spatial detail. Remote sensing emerges as an efficient alternative, providing accessible visualization of agricultural areas. This study evaluates the performance of MapBiomas in monitoring agricultural areas in the semi-arid region of Alagoas, comparing it to a Random Forest model adjusted for the region using higher-resolution images. The first methodology is based on land use and land cover (LULC) data from MapBiomas, an initiative that provides information on land use and land cover in Brazil. The second method employs the Random Forest model, calibrated for the region’s dry season, addressing cloud cover issues and allowing for the identification of irrigated agriculture. LULC data were subjected to a precision analysis using 200 points generated within the study areas, extracting LULC information for each coordinate. These points were overlaid on high-resolution images to assess model accuracy. Additionally, field visits were conducted to validate the identification of agriculture. The irrigated area data from the Random Forest model were correlated with irrigation records from SEMARH. MapBiomas presented a Kappa index of 0.74, with precision exceeding 90% for classes such as forest, natural pasture, non-vegetated area, and water bodies. However, the agriculture class obtained an F1 score of 0.56. The Random Forest model achieved a Kappa index of 0.82, with an F1 score of 0.79 for agriculture. The correlation between the total annual irrigated area data from Random Forest and SEMARH records was high (R = 0.85). The Random Forest model yielded better results in classifying agriculture in the semi-arid region of Alagoas compared to MapBiomas. However, classification limitations were observed in lowland areas due to spectral confusion caused by soil moisture accumulation.
Palavras-chave: Random Forest
Mapbiomas
LULC
Canal do Sertão
Agricultural monitoring
Mapping of irrigated areas
ISSN: 2624-7402
Digital Object Identifier: https://doi.org/10.3390/agriengineering7050134
Tipo do material: Artigo de periódico
Acesso: openAccess
Aparece nas coleções:Artigo em periódico indexado (CNPM)

Arquivos associados a este item:
Arquivo TamanhoFormato 
6335.pdf10.62 MBAdobe PDFVisualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace