Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1177450
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorFERREIRA, I. J. S.
dc.contributor.authorCOSTA, D. dos S.
dc.contributor.authorROLIM, L. A.
dc.contributor.authorFREITAS, S. T. de
dc.contributor.authorSOUZA, N. A. C. de
dc.contributor.authorTERUEL, B.
dc.date.accessioned2025-09-09T12:49:20Z-
dc.date.available2025-09-09T12:49:20Z-
dc.date.created2025-07-23
dc.date.issued2025
dc.identifier.citationJournal of Food Composition and Analysis, v, 148, n. 1, 108024, July, 2025.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1177450-
dc.descriptionThis study aimed to investigate the use of portable NIR spectroscopy with data mining techniques for pesticide quantification in cherry tomatoes and strawberries. For each product, reflectance spectra of 240 samples, composed of three fruits and treated with different concentrations of azoxystrobin, chlorothalonil, chlorpyrifos, difenoconazole, lambda-cyhalothrin, or tetraconazole, were obtained in the wavelength range of 900 - 1700 nm, using the DLP NIRscan and FieldSpec 3 spectrometers. Reference analyses were performed using liquid chromatography. Mathematical pre-processing techniques as well as variable selection were applied to the spectral data. The regression models were developed using Partial Least Squares Regression (PLSR), Orthogonal Projection for Latent Structures (OPLS), Random Forest (RF) and Support Vector Machine (SVM) techniques. The OPLS models with selection of RFE or SFM variables were able to quantify pesticides with R2p from 0.80 to 0.96, RMSEP from 0.01 to 0.03, RPDP from 2.24 to 4.76, and R2p from 0.73 to 0.80, RMSEP from 0.06 to 0.12, RPDP from 1.93 to 2.27 in samples of cherry tomatoes and strawberries, respectively. These results show that portable NIR spectroscopy, combined with data mining techniques, holds promise for monitoring pesticide residues in cherry tomatoes and strawberries.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectNIR portátil
dc.subjectTomate cereja
dc.subjectAprendizado de Máquina
dc.subjectMonitoramento de pesticidas
dc.titleMonitoring pesticides with portable NIR spectroscopy in different intact fruits.
dc.typeArtigo de periódico
dc.subject.thesagroTomate
dc.subject.thesagroResíduo Quimico
dc.subject.thesagroPesticida
dc.subject.thesagroMorango
dc.subject.nalthesaurusChemical residues
dc.subject.nalthesaurusNear infrared radiation
dc.subject.nalthesaurusTomatoes
dc.subject.nalthesaurusCherry tomatoes
dc.subject.nalthesaurusStrawberries
riaa.ainfo.id1177450
riaa.ainfo.lastupdate2025-09-09
dc.identifier.doihttps://doi.org/10.1016/j.jfca.2025.108024
dc.contributor.institutionIARA JEANICE SOUZA FERREIRA, STATE UNIVERSITY OF CAMPINAS; DANIEL DOS SANTOS COSTA, FEDERAL UNIVERSITY OF VALE DO SÃO FRANCISCO; LARISSA ARAÚJO ROLIM, FEDERAL UNIVERSITY OF VALE DO SÃO FRANCISCO; SERGIO TONETTO DE FREITAS, CPATSA; NATHÁLIA ANDREZZA CARVALHO DE SOUZA, FEDERAL UNIVERSITY OF VALE DO SÃO FRANCISCO; BARBARA TERUEL, STATE UNIVERSITY OF CAMPINAS.
Aparece nas coleções:Artigo em periódico indexado (CPATSA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Monitoring-pesticides-with-portable-NIR-spectroscopy-in-different-intact-fruits.pdf4.38 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace