Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1178194Registro completo de metadados
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.contributor.author | OMAGE, F. B. | |
| dc.contributor.author | SALIM, J. A. | |
| dc.contributor.author | MAZONI, I. | |
| dc.contributor.author | YANO, I. H. | |
| dc.contributor.author | GONZÁLEZ, J. E. H. | |
| dc.contributor.author | GIACHETTO, P. F. | |
| dc.contributor.author | TASIC, L. | |
| dc.contributor.author | ARNI, R. K. | |
| dc.contributor.author | NESHICH, G. | |
| dc.date.accessioned | 2025-08-21T14:48:49Z | - |
| dc.date.available | 2025-08-21T14:48:49Z | - |
| dc.date.created | 2025-08-21 | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Briefings in Bioinformatics, v. 26, n. 4, bbaf424, 2025. | |
| dc.identifier.issn | 1467-5463 | |
| dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1178194 | - |
| dc.description | Allosteric regulation is essential for modulating protein function and represents a promising target for therapeutic intervention, yet the complex dynamics of the protein nanoenvironment hinder the reliable identification of allosteric sites. Traditional pocket-based predictors miss 18% of experimentally confirmed sites that lie outside surface invaginations. To overcome this limitation, we developed STINGAllo, an interactive web server that introduces a residue-centric machine-learning model. Using 54 optimized internal protein nanoenvironment descriptors, STINGAllo predicts allosteric site-forming residues at single-residue resolution. By integrating hydrophobic interaction networks, local density, graph connectivity, and a unique “sponge effect” metric, STINGAllo detects allosteric sites independently of surface geometry, including concave pockets, flat surfaces, or even cryptic regions. It achieves a success rate of 78% on benchmark datasets, substantially outperforming existing methods with a 60.2% overall success rate compared with 21.1%–24.2% for contemporary pocket-based predictors. Our analysis further reveals that nearly 52.7% of unique proteins in the Protein Data Bank [(PDB); 119 851 entries, 14 November 2024] contain at least one chain with a predicted allosteric site. STINGAllo accepts protein structures via PDB identifiers or custom uploads, provides interactive 3D visualization of predicted pockets, and supports integration into computational pipelines through a RESTful application programming interface. Overall, STINGAllo bridges advanced computational prediction with user-friendly design, offering a robust tool expected to deepen understanding of protein regulation and accelerate allosteric drug discovery. | |
| dc.language.iso | eng | |
| dc.rights | openAccess | |
| dc.subject | Regulação alostérica | |
| dc.subject | Previsão de sítio alostérico | |
| dc.subject | Nanoambiente de proteína | |
| dc.subject | Aprendizado de máquina | |
| dc.subject | Web server | |
| dc.subject | Allosteric regulation | |
| dc.subject | Allosteric site prediction | |
| dc.subject | Internal protein nanoenvironment | |
| dc.subject | Machine learning | |
| dc.subject | Allosteric site-forming residues | |
| dc.subject | Per-residue classification | |
| dc.subject | STING most relevant descriptors for IPNs | |
| dc.title | STINGAllo: a web server for high-throughput prediction of allosteric site-forming residues using internal protein nanoenvironment descriptors. | |
| dc.type | Artigo de periódico | |
| riaa.ainfo.id | 1178194 | |
| riaa.ainfo.lastupdate | 2025-08-21 | |
| dc.identifier.doi | https://doi.org/10.1093/bib/bbaf424 | |
| dc.contributor.institution | FOLORUNSHO BRIGHT OMAGE; JOSÉ AUGUSTO SALIM, UNIVERSIDADE ESTADUAL DE CAMPINAS; IVAN MAZONI, CNPTIA; INACIO HENRIQUE YANO, CNPTIA; JORGE ENRIQUE HERNÁNDEZ GONZÁLEZ, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; POLIANA FERNANDA GIACHETTO, CNPTIA; LJUBICA TASIC, UNIVERSIDADE ESTADUAL DE CAMPINAS; RAGHUVIR KRISHNASWAMY ARNI, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; GORAN NESIC, CNPTIA. | |
| Aparece nas coleções: | Artigo em periódico indexado (CNPTIA)![]() ![]() | |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Ap-STINGAllo-2025.pdf | 1.55 MB | Adobe PDF | ![]() Visualizar/Abrir |








