Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1178194
Título: | STINGAllo: a web server for high-throughput prediction of allosteric site-forming residues using internal protein nanoenvironment descriptors. |
Autor: | OMAGE, F. B.![]() ![]() SALIM, J. A. ![]() ![]() MAZONI, I. ![]() ![]() YANO, I. H. ![]() ![]() GONZÁLEZ, J. E. H. ![]() ![]() GIACHETTO, P. F. ![]() ![]() TASIC, L. ![]() ![]() ARNI, R. K. ![]() ![]() NESHICH, G. ![]() ![]() |
Afiliación: | FOLORUNSHO BRIGHT OMAGE; JOSÉ AUGUSTO SALIM, UNIVERSIDADE ESTADUAL DE CAMPINAS; IVAN MAZONI, CNPTIA; INACIO HENRIQUE YANO, CNPTIA; JORGE ENRIQUE HERNÁNDEZ GONZÁLEZ, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; POLIANA FERNANDA GIACHETTO, CNPTIA; LJUBICA TASIC, UNIVERSIDADE ESTADUAL DE CAMPINAS; RAGHUVIR KRISHNASWAMY ARNI, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; GORAN NESIC, CNPTIA. |
Año: | 2025 |
Referencia: | Briefings in Bioinformatics, v. 26, n. 4, bbaf424, 2025. |
Descripción: | Allosteric regulation is essential for modulating protein function and represents a promising target for therapeutic intervention, yet the complex dynamics of the protein nanoenvironment hinder the reliable identification of allosteric sites. Traditional pocket-based predictors miss 18% of experimentally confirmed sites that lie outside surface invaginations. To overcome this limitation, we developed STINGAllo, an interactive web server that introduces a residue-centric machine-learning model. Using 54 optimized internal protein nanoenvironment descriptors, STINGAllo predicts allosteric site-forming residues at single-residue resolution. By integrating hydrophobic interaction networks, local density, graph connectivity, and a unique “sponge effect” metric, STINGAllo detects allosteric sites independently of surface geometry, including concave pockets, flat surfaces, or even cryptic regions. It achieves a success rate of 78% on benchmark datasets, substantially outperforming existing methods with a 60.2% overall success rate compared with 21.1%–24.2% for contemporary pocket-based predictors. Our analysis further reveals that nearly 52.7% of unique proteins in the Protein Data Bank [(PDB); 119 851 entries, 14 November 2024] contain at least one chain with a predicted allosteric site. STINGAllo accepts protein structures via PDB identifiers or custom uploads, provides interactive 3D visualization of predicted pockets, and supports integration into computational pipelines through a RESTful application programming interface. Overall, STINGAllo bridges advanced computational prediction with user-friendly design, offering a robust tool expected to deepen understanding of protein regulation and accelerate allosteric drug discovery. |
Palabras clave: | Regulação alostérica Previsão de sítio alostérico Nanoambiente de proteína Aprendizado de máquina Web server Allosteric regulation Allosteric site prediction Internal protein nanoenvironment Machine learning Allosteric site-forming residues Per-residue classification STING most relevant descriptors for IPNs |
ISSN: | 1467-5463 |
DOI: | https://doi.org/10.1093/bib/bbaf424 |
Tipo de Material: | Artigo de periódico |
Acceso: | openAccess |
Aparece en las colecciones: | Artigo em periódico indexado (CNPTIA)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Ap-STINGAllo-2025.pdf | 1.55 MB | Adobe PDF | ![]() Visualizar/Abrir |