Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1178194
Título: STINGAllo: a web server for high-throughput prediction of allosteric site-forming residues using internal protein nanoenvironment descriptors.
Autor: OMAGE, F. B.
SALIM, J. A.
MAZONI, I.
YANO, I. H.
GONZÁLEZ, J. E. H.
GIACHETTO, P. F.
TASIC, L.
ARNI, R. K.
NESHICH, G.
Afiliación: FOLORUNSHO BRIGHT OMAGE; JOSÉ AUGUSTO SALIM, UNIVERSIDADE ESTADUAL DE CAMPINAS; IVAN MAZONI, CNPTIA; INACIO HENRIQUE YANO, CNPTIA; JORGE ENRIQUE HERNÁNDEZ GONZÁLEZ, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; POLIANA FERNANDA GIACHETTO, CNPTIA; LJUBICA TASIC, UNIVERSIDADE ESTADUAL DE CAMPINAS; RAGHUVIR KRISHNASWAMY ARNI, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; GORAN NESIC, CNPTIA.
Año: 2025
Referencia: Briefings in Bioinformatics, v. 26, n. 4, bbaf424, 2025.
Descripción: Allosteric regulation is essential for modulating protein function and represents a promising target for therapeutic intervention, yet the complex dynamics of the protein nanoenvironment hinder the reliable identification of allosteric sites. Traditional pocket-based predictors miss 18% of experimentally confirmed sites that lie outside surface invaginations. To overcome this limitation, we developed STINGAllo, an interactive web server that introduces a residue-centric machine-learning model. Using 54 optimized internal protein nanoenvironment descriptors, STINGAllo predicts allosteric site-forming residues at single-residue resolution. By integrating hydrophobic interaction networks, local density, graph connectivity, and a unique “sponge effect” metric, STINGAllo detects allosteric sites independently of surface geometry, including concave pockets, flat surfaces, or even cryptic regions. It achieves a success rate of 78% on benchmark datasets, substantially outperforming existing methods with a 60.2% overall success rate compared with 21.1%–24.2% for contemporary pocket-based predictors. Our analysis further reveals that nearly 52.7% of unique proteins in the Protein Data Bank [(PDB); 119 851 entries, 14 November 2024] contain at least one chain with a predicted allosteric site. STINGAllo accepts protein structures via PDB identifiers or custom uploads, provides interactive 3D visualization of predicted pockets, and supports integration into computational pipelines through a RESTful application programming interface. Overall, STINGAllo bridges advanced computational prediction with user-friendly design, offering a robust tool expected to deepen understanding of protein regulation and accelerate allosteric drug discovery.
Palabras clave: Regulação alostérica
Previsão de sítio alostérico
Nanoambiente de proteína
Aprendizado de máquina
Web server
Allosteric regulation
Allosteric site prediction
Internal protein nanoenvironment
Machine learning
Allosteric site-forming residues
Per-residue classification
STING most relevant descriptors for IPNs
ISSN: 1467-5463
DOI: https://doi.org/10.1093/bib/bbaf424
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (CNPTIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Ap-STINGAllo-2025.pdf1.55 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace