Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1179561
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | FRONTADO, N. E. V. | eng |
dc.contributor.author | DIFANTE, G. dos S. | eng |
dc.contributor.author | ARAUJO, A. R. de | eng |
dc.contributor.author | MONTAGNER, D. B. | eng |
dc.contributor.author | SILVA, H. R. da | eng |
dc.contributor.author | TEODORO, L. P. R. | eng |
dc.date.accessioned | 2025-10-09T19:57:17Z | - |
dc.date.available | 2025-10-09T19:57:17Z | - |
dc.date.created | 2025-10-09 | |
dc.date.issued | 2024 | |
dc.identifier.citation | In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 58., 2024, Cuiabá. Zootecnia para segurança alimentar e sustentabilidade climática: anais. Brasília, DF: SBZ; Cuiabá: Universidade Federal de Mato Grosso, 2024. | |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1179561 | - |
dc.description | Forage plants of the species Megathyrsus maximus (Syn. Panicum maximum) are an important alternative for the more than 160 million hectares devoted to meat production on pasture. Train and validate machine learning algorithms to identify the most accurate model in classifying cultivars and genotypes of this species. The objective was to evaluate the performance of two classification models low-growing M. maximus forages using dry mass production data and pasture structural and morphogenic variables as inputs. | |
dc.language.iso | eng | |
dc.rights | openAccess | |
dc.title | Using Machine Learning to classify low-growing forage plants of Megathyrsus maximus (Syn. Panicum maximum). | |
dc.type | Resumo em anais e proceedings | |
dc.subject.thesagro | Genótipo | eng |
dc.subject.thesagro | Panicum Maximum | eng |
dc.subject.nalthesaurus | Forage | |
dc.subject.nalthesaurus | Genotype | |
dc.subject.nalthesaurus | Megathyrsus maximus | |
dc.subject.nalthesaurus | Morphogenesis | eng |
dc.subject.nalthesaurus | Pastures | eng |
riaa.ainfo.id | 1179561 | |
riaa.ainfo.lastupdate | 2025-10-09 | |
dc.contributor.institution | NÉSTOR EDUARDO VILLAMIZAR FRONTADO, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL | eng |
dc.contributor.institution | GELSON DOS SANTOS DIFANTE, UNIVERSIDADE DE MATO GROSSO DO SUL | eng |
dc.contributor.institution | ALEXANDRE ROMEIRO DE ARAUJO, CNPGC | eng |
dc.contributor.institution | DENISE BAPTAGLIN MONTAGNER, CNPGC | eng |
dc.contributor.institution | HITALO RODRIGUES DA SILVA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL | eng |
dc.contributor.institution | LARISSA PEREIRA RIBEIRO TEODORO, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL. | eng |
Aparece en las colecciones: | Resumo em anais de congresso (CNPGC)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Using-machine-learning-2024.pdf | 252.27 kB | Adobe PDF | ![]() Visualizar/Abrir |