Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1179561
Title: Using Machine Learning to classify low-growing forage plants of Megathyrsus maximus (Syn. Panicum maximum).
Authors: FRONTADO, N. E. V.
DIFANTE, G. dos S.
ARAUJO, A. R. de
MONTAGNER, D. B.
SILVA, H. R. da
TEODORO, L. P. R.
Affiliation: NÉSTOR EDUARDO VILLAMIZAR FRONTADO, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL
GELSON DOS SANTOS DIFANTE, UNIVERSIDADE DE MATO GROSSO DO SUL
ALEXANDRE ROMEIRO DE ARAUJO, CNPGC
DENISE BAPTAGLIN MONTAGNER, CNPGC
HITALO RODRIGUES DA SILVA, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL
LARISSA PEREIRA RIBEIRO TEODORO, UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL.
Date Issued: 2024
Citation: In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 58., 2024, Cuiabá. Zootecnia para segurança alimentar e sustentabilidade climática: anais. Brasília, DF: SBZ; Cuiabá: Universidade Federal de Mato Grosso, 2024.
Description: Forage plants of the species Megathyrsus maximus (Syn. Panicum maximum) are an important alternative for the more than 160 million hectares devoted to meat production on pasture. Train and validate machine learning algorithms to identify the most accurate model in classifying cultivars and genotypes of this species. The objective was to evaluate the performance of two classification models low-growing M. maximus forages using dry mass production data and pasture structural and morphogenic variables as inputs.
Thesagro: Genótipo
Panicum Maximum
NAL Thesaurus: Forage
Genotype
Megathyrsus maximus
Morphogenesis
Pastures
Type of Material: Resumo em anais e proceedings
Access: openAccess
Appears in Collections:Resumo em anais de congresso (CNPGC)

Files in This Item:
File Description SizeFormat 
Using-machine-learning-2024.pdf252.27 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace