Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1181849
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSILVA, C. S. da
dc.contributor.authorSGUIZATTO, A. L. L.
dc.contributor.authorMACHADO, A. F.
dc.contributor.authorGRAÇAS, A. V. das
dc.contributor.authorLOPES, F. C. F.
dc.contributor.authorSILVA, A. S.
dc.contributor.authorCAMPOS, M. M.
dc.contributor.authorMORENZ, M. J. F.
dc.date.accessioned2025-11-25T11:49:19Z-
dc.date.available2025-11-25T11:49:19Z-
dc.date.created2025-11-25
dc.date.issued2025
dc.identifier.citationIn: SIMPÓSIO INTERNACIONAL DE BOVINOCULTURA LEITEIRA, 10., 2025, Viçosa, MG. Anais [...]. São Carlos: Scienza, 2025.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1181849-
dc.descriptionEmpirical equations developed for temperate-climate conditions (NRC, 2001; NASEM, 2021) are widely used to estimate dry matter intake (DMI) of lactating cows. In tropical regions such as Brazil, diff erences in feed, genetics, and environment led to the creation of specifi c equations for Holstein and crossbred cows (BR-Leite; Oliveira et al., 2024). However, these models, built from generalized traits, have limited accuracy for predicting individual DMI. In contrast, machine-learning algorithms, such as Random Forests, have shown great potential for customized predictions by integrating multiple features at the cow level. Random Forests have been applied in several dairy studies, including the prediction of daily eating time (Foldager et al., 2020). Therefore, this study aimed to compare the DMI of Holstein × Gyr (Girolando) cows predicted by a machine-learning approach, using data- -integrated Random Forest model, with those predicted by the NRC (2001) and BR-Leite (2024).
dc.language.isoeng
dc.rightsopenAccess
dc.subjectRaça Girolando
dc.subjectModelagem
dc.titleComparison of machine-learning integrative model and empirical equations for predicting individual dry matter intake in Girolando dairy.
dc.typeArtigo em anais e proceedings
dc.subject.thesagroBovino
dc.subject.thesagroConsumo
dc.subject.thesagroRação
dc.subject.thesagroMatéria Seca
dc.description.notesSIMLEITE.
dc.format.extent2p. 701-703.
riaa.ainfo.id1181849
riaa.ainfo.lastupdate2025-11-25
dc.contributor.institutionANDREIA FERREIRA MACHADO, CNPGL; UNIVERSIDADE FEDERAL DE JUIZ DE FORA; FERNANDO CESAR FERRAZ LOPES, CNPGL; MARIANA MAGALHAES CAMPOS, CNPGL; MIRTON JOSE FROTA MORENZ, CNPGL.
Appears in Collections:Artigo em anais de congresso (CNPGL)

Files in This Item:
File Description SizeFormat 
Comparison-of-machine-learning-integrative-model.pdf177,7 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace