Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1181849| Título: | Comparison of machine-learning integrative model and empirical equations for predicting individual dry matter intake in Girolando dairy. |
| Autor: | SILVA, C. S. da![]() ![]() SGUIZATTO, A. L. L. ![]() ![]() MACHADO, A. F. ![]() ![]() GRAÇAS, A. V. das ![]() ![]() LOPES, F. C. F. ![]() ![]() SILVA, A. S. ![]() ![]() CAMPOS, M. M. ![]() ![]() MORENZ, M. J. F. ![]() ![]() |
| Afiliación: | ANDREIA FERREIRA MACHADO, CNPGL; UNIVERSIDADE FEDERAL DE JUIZ DE FORA; FERNANDO CESAR FERRAZ LOPES, CNPGL; MARIANA MAGALHAES CAMPOS, CNPGL; MIRTON JOSE FROTA MORENZ, CNPGL. |
| Año: | 2025 |
| Referencia: | In: SIMPÓSIO INTERNACIONAL DE BOVINOCULTURA LEITEIRA, 10., 2025, Viçosa, MG. Anais [...]. São Carlos: Scienza, 2025. |
| Páginas: | p. 701-703. |
| Descripción: | Empirical equations developed for temperate-climate conditions (NRC, 2001; NASEM, 2021) are widely used to estimate dry matter intake (DMI) of lactating cows. In tropical regions such as Brazil, diff erences in feed, genetics, and environment led to the creation of specifi c equations for Holstein and crossbred cows (BR-Leite; Oliveira et al., 2024). However, these models, built from generalized traits, have limited accuracy for predicting individual DMI. In contrast, machine-learning algorithms, such as Random Forests, have shown great potential for customized predictions by integrating multiple features at the cow level. Random Forests have been applied in several dairy studies, including the prediction of daily eating time (Foldager et al., 2020). Therefore, this study aimed to compare the DMI of Holstein × Gyr (Girolando) cows predicted by a machine-learning approach, using data- -integrated Random Forest model, with those predicted by the NRC (2001) and BR-Leite (2024). |
| Thesagro: | Bovino Consumo Ração Matéria Seca |
| Palabras clave: | Raça Girolando Modelagem |
| Notas: | SIMLEITE. |
| Tipo de Material: | Artigo em anais e proceedings |
| Acceso: | openAccess |
| Aparece en las colecciones: | Artigo em anais de congresso (CNPGL)![]() ![]() |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| Comparison-of-machine-learning-integrative-model.pdf | 177,7 kB | Adobe PDF | ![]() Visualizar/Abrir |








