Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1184066
Título: Modeling omics integration with HIVE identifies response signatures to multifactorial stress in plants.
Autoria: CALIA, G.
MARGUERIT, S.
MOTA, A. P. Z.
VIDAL, M.
SCHULER, H.
BRASILEIRO, A. C. M.
GUIMARAES, P. M.
BOTTINI, S.
Afiliação: GIULIA CALIA, UNIVERSITÉ CÔTE D’AZUR
SOPHIA MARGUERIT, UNIVERSITÉ CÔTE D’AZUR
ANA PAULA ZOTTA MOTA, UNIVERSITÉ CÔTE D’AZUR
MANON VIDAL, UNIVERSITÉ CÔTE D’AZUR
HANNES SCHULER, FREE UNIVERSITY OF BOLZANO
ANA CRISTINA MIRANDA BRASILEIRO, CENARGEN
PATRICIA MESSEMBERG GUIMARAES, CENARGEN
SILVIA BOTTINI, UNIVERSITÉ CÔTE D’AZUR.
Ano de publicação: 2025
Referência: Plant Physiology, v. 199, n. 4, kiaf618, 2025.
Conteúdo: To address these challenges, we developed HIVE (Horizontal Integration analysis using Variational AutoEncoders), a method to jointly analyze multiple transcriptomics data from different experiments (i.e. unpaired). The current implementation is based on the use of a VAE, a generative model that learns low-dimensional representations of the observed data, using a variational Bayes methodology in an unsupervised framework. By coupling a random forest regression model and the SHAP explainer, HIVE selects relevant genes for the studied phenotype. The application of a nested stratified cross-validation technique allowed us not only to treat datasets with unbalanced classes but also to overcome the small sample size challenges (Fig. 1, Supplementary Note S1, Supplementary Figs. S1 to S5, and Supplementary Tables S1 to S3).
Thesagro: Planta
Palavras-chave: Omics
HIVE
Multifactorial stress
Digital Object Identifier: https://doi.org/10.1093/plphys/kiaf618
Tipo do material: Folhetos
Acesso: openAccess
Aparece nas coleções:Nota Técnica/Nota científica (CENARGEN)

Arquivos associados a este item:
Arquivo TamanhoFormato 
kiaf618.pdf2,52 MBAdobe PDFVisualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace