Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/17022
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | BIONDI NETO, L. | eng |
dc.contributor.author | COELHO, P. H. G. | eng |
dc.contributor.author | MELLO, J. C. C. B. S. de | eng |
dc.contributor.author | GOMES, E. G. | eng |
dc.date.accessioned | 2019-03-23T00:37:23Z | - |
dc.date.available | 2019-03-23T00:37:23Z | - |
dc.date.created | 2004-04-28 | |
dc.date.issued | 2003 | |
dc.identifier.citation | In: INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2003), 15., 2003, Angers-France. Proceedings... Setúbal-Portugal: Escola Superior de Tecnologia de Setúbal-Campus do Instituto Politécnico, 2003. | eng |
dc.identifier.uri | http://www.alice.cnptia.embrapa.br/alice/handle/doc/17022 | - |
dc.description | This article studies the creation of efficiency measurement structures of Decision-Making Units (DMUs) by using high-speed optimisation modules, inspired in the idea of an unconventional Artificial Neural Network (ANN) and numerical methods. In addition, the Linear Programming Problem (LPP) inherent in the Data Envelopment Analysis (DEA) methodology is transformed into an optimisation problem without constraints, by using a pseudo-cost function, including a penalty term, causing high cost every time one of the constraints is violated. The LPP is converted into a differential equations system. A non-standard ANN implements a numerical solution based on the gradient method. | eng |
dc.format | folhas avulsas | eng |
dc.language.iso | eng | eng |
dc.rights | openAccess | eng |
dc.subject | redes neurais | eng |
dc.subject | DEA | eng |
dc.title | Simulating data envelopment analysis using neural networks: a new paradigm of efficiency measurement. | eng |
dc.type | Artigo em anais e proceedings | eng |
dc.date.updated | 2019-03-23T00:37:23Z | |
dc.subject.thesagro | Análise de Dados | eng |
dc.format.extent2 | 244-249 | eng |
riaa.ainfo.id | 17022 | eng |
riaa.ainfo.lastupdate | 2019-03-22 | |
dc.contributor.institution | 1 e 2: Universidade Estadual do Rio de Janeiro; 3: Universidade Federal Fluminense; 4: Embrapa Monitoramento por Satélite. | eng |
Aparece nas coleções: | Artigo em anais de congresso (CNPM)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
1129.pdf | 243.57 kB | Adobe PDF | ![]() Visualizar/Abrir |