Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/904475
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorARAUJO, L. C.pt_BR
dc.contributor.authorSANTOS, P. M.pt_BR
dc.contributor.authorRODRIGUES, D.pt_BR
dc.contributor.authorPEZZOPANE, J. R. M.pt_BR
dc.contributor.authorCRUZ, P. G.pt_BR
dc.contributor.authorOLIVEIRA, P. P. A.pt_BR
dc.date.accessioned2011-10-31T11:11:11Zpt_BR
dc.date.accessioned2011-10-31T11:11:11Zpt_BR
dc.date.available2011-10-31T11:11:11Zpt_BR
dc.date.available2011-10-31T11:11:11Zpt_BR
dc.date.created2011-10-31pt_BR
dc.date.issued2011pt_BR
dc.identifier.citationIn: WORLD CONGRESS ON CONSERVATION AGRICULTURE, 5.; FARMING SYSTEMS DESIGN CONFERENCE, 3., 2011, Brisbane, Australia. Proceedings... Brisbane: WCCA: FSD, 2011.pt_BR
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/904475pt_BR
dc.descriptionCurrently, Brazil has the world?s largest commercial herd of cattle, much of which is raised in extensive grazing farms. The area occupied by pastures in Brazil is approximately 172 million hectares, i.e. 69% of the total area dedicated to agricultural production. Panicum maximum grasses are particularly important in intensive production systems, i.e. irrigated and fertilized, because of their high annual productivity in Brazil?s tropical climate. Managing these intensive systems will require designing robust farming systems and better allocations of limited and increasingly more expensive inputs, in highly variable climates and markets. The development of simulation models that consider the influence of the climate on forage production can facilitate the planning and administration of forage production on the farm. Moreover, simulation models are commonly used to estimate expected changes in climate on the productivity of agricultural systems. Agro-climatic models are, in general, simple to use, require wide available inputs, and can be useful tools for these purposes. When applied in such a specific environment, they can often give more accurate simulations than more complicated and data intensive mechanistic models. In addition, agro-climatic models are often much easier to develop and calibrate than mechanistic models (Teh, 2006). In this paper we parameterized and tested three alternative agro-climatic models, (i) a degree-day model (DDi), (ii) a photo-thermal-units model (PUi), and (iii) a growth climate index model (GCI), to estimate the dry matter production of Panicum maximum cv. Mombaça in São Paulo State, Brazil.pt_BR
dc.language.isoengpt_BR
dc.rightsopenAccesspt_BR
dc.subjectDegree daypt_BR
dc.subjectTropical grasspt_BR
dc.subjectModeleng
dc.titleUsing agro-climatic models to estimate the Guineagrass potential production in Brazilian tropical Savanna.pt_BR
dc.typeArtigo em anais e proceedingspt_BR
dc.date.updated2011-11-10T11:11:11Zpt_BR
dc.subject.nalthesaurusPanicumpt_BR
dc.format.extent2p.455-456.pt_BR
riaa.ainfo.id904475pt_BR
riaa.ainfo.lastupdate2011-11-10pt_BR
dc.contributor.institutionLEANDRO C. ARAUJO, ESALQ/PIRACICABA; PATRICIA MENEZES SANTOS, CPPSE; QUEENSLAND ALLIANCE FOR AGRICULTURE AND FOOD INNOVATION, UNIVERSITY OF QUEENSLAND. PO BOX 102 TOOWOOMBA; JOSE RICARDO MACEDO PEZZOPANE, CPPSE; PEDRO G. CRUZ, ESALQ/PIRACICABA; PATRICIA PERONDI ANCHAO OLIVEIRA, CPPSE.pt_BR
Aparece en las colecciones:Artigo em anais de congresso (CPPSE)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
PROCI2011.00124.pdf1.74 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace