Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/994980
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorLU, D.pt_BR
dc.contributor.authorBATISTELLA, M.pt_BR
dc.contributor.authorMORAN, E.pt_BR
dc.date.accessioned2014-09-15T11:11:11Zpt_BR
dc.date.available2014-09-15T11:11:11Zpt_BR
dc.date.created2014-09-15pt_BR
dc.date.issued2004pt_BR
dc.identifier.citationCanadian Journal of Remote Sensing, v. 30, n. 1, p. 87-100, 2004.pt_BR
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/994980pt_BR
dc.descriptionThe complex landscape and environmental conditions in the moist tropical region often result in poor land-cover change detection accuracy using traditional change detection methods. This paper explores linear spectral mixture analysis (LSMA) of multitemporal thematic mapper (TM) images to detect land-cover change in Rondônia, Brazilian Amazon basin. Three image endmembers (shade, green vegetation, and soil) were developed based on a combination of field data and image scatterplots. An unconstrained least-squares solution was used to unmix the multitemporal TM images into three fractions. Then, fraction image differencing results were used to analyze land-cover change/non-change detection. The detailed ?from-to? change detection was implemented using a pixel-by-pixel comparison of classified images, which were developed using a decision tree classifier on the multitemporal fraction images. This study indicates that LSMA is a powerful image processing tool for land-cover classification and change detection. The multitemporal fraction images can be effectively used for land-cover change detection. The stable and reliable multitemporal fraction images developed using LSMA make the change detection possible without the use of training sample datasets for historical remotely sensed data. This characteristic is particularly valuable for the land-cover change detection in the Amazon basin.pt_BR
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectTropical regionpt_BR
dc.titleMultitemporal spectral mixture analysis for Amazonian land-cover change detection.pt_BR
dc.typeArtigo de periódicopt_BR
dc.date.updated2014-09-15T11:11:11Zpt_BR
dc.subject.nalthesaurusRemote sensingpt_BR
riaa.ainfo.id994980pt_BR
riaa.ainfo.lastupdate2014-09-15pt_BR
dc.contributor.institutionDENGSHENG LU, INDIANA UNIVERSITY; MATEUS BATISTELLA, CNPM; EMILIO MORAN, INDIANA UNIVERSITY.pt_BR
Aparece en las colecciones:Artigo em periódico indexado (CNPM)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
4023.pdf3.49 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace