Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1007369
Research center of Embrapa/Collection: Embrapa Trigo - Artigo em periódico indexado (ALICE)
Date Issued: 2014
Type of Material: Artigo em periódico indexado (ALICE)
Authors: ZHOU, G.
PEREIRA, J. F.
DELHAIZE, E.
ZHOU, M.
MAGALHAES, J. V.
RYAN, P. R.
Additional Information: UNIVERSITY OF TASMANIA; JORGE FERNANDO PEREIRA, CNPT; CSIRO PLANT INDUSTRY; UNIVERSITY OF TASMANIA; JURANDIR VIEIRA DE MAGALHAES, CNPMS; CSIRO PLANT INDUSTRY.
Title: Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3.
Publisher: Journal of Experimental Botany, London, v. 65, n. 9, p. 2381-2390, 2014.
Language: en
Keywords: Citrato
Tolerância ao alumínio
Transgênico.
Description: Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al3+ tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al3+-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al3+-activated citrate efflux from root apices and greater tolerance to Al3+ toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al3+ tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al3+ tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al3+ tolerance of an important crop species.
Thesagro: Cevada
Solo Ácido.
Data Created: 2015-01-30
Appears in Collections:Artigo em periódico indexado (CNPT)

Files in This Item:
File Description SizeFormat 
2014JournalofExperimentalBotanyv65n9p2381.pdf1,87 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace