Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1103941
Título: | Automatic environmental zoning with self-organizing maps. |
Autor: | SILVA, M. A. S. da![]() ![]() MACIEL, R. J. S. ![]() ![]() MATOS, L. N. ![]() ![]() DOMPIERI, M. H. G. ![]() ![]() |
Afiliación: | MARCOS AURELIO SANTOS DA SILVA, CPATC; RENATO JOSE SANTOS MACIEL, CNPTIA; LEONARDO N. MATOS, UNIVERSIDADE FEDERAL DO SERGIPE; MARCIA HELENA GALINA DOMPIERI, CNPM. |
Año: | 2018 |
Referencia: | Modern Environmental Science and Engineering, v. 4, n. 9, p. 872-881, sep. 2018. |
Descripción: | This article presents the application of the Self-Organizing Maps (SOM) as an exploratory tool for automatic environmental zoning by combining the handle of categorical data and the other for automatic clustering. The SOM online learning algorithm had been chosen to treat categorical data by using the dot product method and the Sorense-Dice binary similarity coefficient. To automatically perform a spatial clustering, an adaptation of the automatic clustering Costa-Netto algorithm had been also proposed. The correspondence analysis had been used to examine the profiles of each homogeneous zones. To explore the approach it has been performed the environmental zoning of the Alto Taquari River Basin, Brazil, using as input data a set of thematic maps. The results indicate the applicability of the approach to perform the exploratory environmental zoning. |
NAL Thesaurus: | Correspondence analysis |
Palabras clave: | Artificial neural network Exploratory spatial analysis Similarity coefficients Alto Taquari river |
ISBN: | 2333-2581 |
DOI: | 10.15341/mese(2333-2581)/09.04.2018/011 |
Tipo de Material: | Artigo de periódico |
Acceso: | openAccess |
Aparece en las colecciones: | Artigo em periódico indexado (CNPM)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
5030.pdf | 710.38 kB | Adobe PDF | ![]() Visualizar/Abrir |