Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1119121
Title: | SCAI-r: an algorithm for obtaining synoptic and spatial atmospheric parameters. |
Authors: | VICENTE, L. E.![]() ![]() LOEBMANN, D. G. dos S. W. ![]() ![]() PAZIANOTTO, R. A. A. ![]() ![]() FAGGIONI, M. ![]() ![]() GOMES, A. C. C. ![]() ![]() |
Affiliation: | LUIZ EDUARDO VICENTE, CNPMA; DANIEL GOMES DOS SANTOS W LOEBMANN, CNPMA; RICARDO ANTONIO ALMEIDA PAZIANOTTO, CNPMA; MIGUEL FAGGIONI, UNICAMP; ANA CAROLINA CAMPOS GOMES. |
Date Issued: | 2019 |
Citation: | In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 19., 2019, Santos. Anais... São José dos Campos: INPE, 2019. Ref. 96399. |
Pages: | p. 1-4. |
Description: | Abstract: The highest performance of multiband optical data (Visible - VIS ? Shortwave Infrared - SWIR ? (400-2500 nm) (e.g. imaging spectroscopy approaches) can be reached mainly through atmospheric correction effects; the conversion of the image values to surface reflectance, allowing, for instance, to estimate the amount of biochemical compounds in the target. This work aims to present an algorithm dedicated to atmospheric parameters obtaining from MODIS and related sensors, encapsulated in a user-friendly interface through Software to Collect Atmospheric Information (SCAI-r), applied to the correction of atmosphere effects on Rapideye image. The results show that SCAI-r generates information needed to perform atmospheric correction and that it has a greater influence over water-related objects, when compared to parameters randomly inserted as input data in atmospheric correction algorithms. |
Thesagro: | Sensoriamento Remoto Satélite |
NAL Thesaurus: | Remote sensing Radiative transfer |
Keywords: | Atmospheric Correction RapidEye Visibility Aerosol Optical Thickness Radiative Transfer Model |
ISBN: | 978-85-17-00097-3 |
Type of Material: | Artigo em anais e proceedings |
Access: | openAccess |
Appears in Collections: | Artigo em anais de congresso (CNPMA)![]() ![]() |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Vicentescaialgorithm2019.pdf | 747.64 kB | Adobe PDF | ![]() View/Open |