Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1135153
Title: Pipeline de detecção de laranjas a partir de vídeos.
Authors: VERALDI, T. P.
CAMARGO NETO, J.
SANTOS, T. T.
TERNES, S.
SOUZA, K. X. S. de
Affiliation: TIAGO PETENÁ VERALDI, BOLSISTA CNPQ (PIBITI); JOAO CAMARGO NETO, CNPTIA; THIAGO TEIXEIRA SANTOS, CNPTIA; SONIA TERNES, CNPTIA; KLEBER XAVIER SAMPAIO DE SOUZA, CNPTIA.
Date Issued: 2021
Citation: In: CONGRESSO INTERINSTITUCIONAL DE INICIAÇÃO CIENTÍFICA, 15., 2021, Campinas. Anais [...]. Campinas: Instituto de Zootecnia, 2021. p. 1-11. Ref. 21609.
Description: RESUMO - A detecção de frutos utilizando vídeos, adquiridos em laranjais, é um processo que envolve a utilização de vários sistemas. Cada um é responsável por uma etapa do processo de detecção, sendo que o resultado de um serve como entrada para o outro. Para que o processo seja executado corretamente é necessário a validação dos resultados em cada etapa, antes do início da próxima etapa. Caso o resultado de uma etapa não seja satisfatória, é necessário executar a etapa anterior utilizando outros parâmetros de ajustes, até que se obtenha um resultado aceitável. Este procedimento pode ser executado manualmente, mas é muito trabalhoso. Este trabalho apresenta uma solução baseada no conceito de máquina de estado finito para automatizar o processo de detecção de frutos.
NAL Thesaurus: Computer vision
Keywords: Máquina de Estado
Visão Computacional
Redes Neurais Profundas
Framework
State Machine
Deep Neural Networks
ISBN: 978-65-994972-0-9
Language: Portugues
Notes: Evento online. CIIC 2021.
Type of Material: Anais e Proceedings de eventos
Access: openAccess
Appears in Collections:Artigo em anais de congresso (CNPTIA)

Files in This Item:
File Description SizeFormat 
RE21609.pdf551,16 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace