Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1160424
Title: Topographyc shadow influence on optical image acquired by satellite in the southern hemisphere.
Authors: FRANÇA, M. M.
FERNANDES FILHO, E. I.
FERREIRA, W. P. M.
LANI, J. L.
SOARES, V. P.
Affiliation: MICHELLE M. FRANÇA, UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ; ELPIDIO I. FERNANDES FILHO, UNIVERSIDADE FEDERAL DE VIÇOSA; WILLIAMS PINTO MARQUES FERREIRA, CNPCa; JOÃO L. LANI, UNIVERSIDADE FEDERAL DE VIÇOSA; VICENTE P. SOARES, UNIVERSIDADE FEDERAL DE VIÇOSA.
Date Issued: 2018
Citation: Engenharia Agrícola, v. 38, n. 5, p.728-740, 2018.
Description: During image acquisition, is usually chosen scenes with a lesser cloud cover to avoid loss of spectral information. However, when training samples are collected for image classification, the user finds shadowed areas. Such situation is similar to the presence of clouds since spectral information of these classes is the same in all optical bands of the sensor. This fact becomes more pronounced in mountainous relief areas due to shadow projection on the terrain, which can vary among all seasons during the solar year. With the goal to obtain images with a lower presence of shadow, it was simulated, under the same relief conditions, shading variation in function of latitude (0 degrees to 40 degrees S). Solar radiation models were processed for the days and times passages of the Landsat TM and ETM+ satellite on the Southern Hemisphere. It was verified that over 30 degrees S and 40 degrees S latitudes, a loss of shading area varying between 27% to 91 % and that images should be preferentially taken between October and February. For latitudes comprising 0 degrees and 10 degrees S, the loss was considered negligible, when we set a 10% threshold of loss in the total valid area in an image. According to the amount of radiation in a terrain, South and West areas received less direct solar radiation over the year for all analyzed latitudes in the modeling.
NAL Thesaurus: Landsat
Remote sensing
Solar radiation
DOI: https://doi.org/10.1590/1809-4430-Eng.Agric.v38n5p728-740/2018
Type of Material: Artigo de periódico
Access: openAccess
Appears in Collections:Artigo em periódico indexado (SAPC)

Files in This Item:
File Description SizeFormat 
Topographyc-shadow-influence.pdf1.31 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace